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A Galerkin—Legendre spectral method for the direct solution of Poisson and
Helmholtz equations in a three-dimensional rectangular domain is presented. The
method extends Jie Shen’s algorithm for 2D problems by using the diagonalization
of the three mass matrices in the three spatial directions and fully exploits the di-
rect product nature of the spectral approximation. The Dirichlet boundary values are
taken into account by means of a discrete lifting performed in three subsequent steps
and built upon Gauss—Legendre quadrature points. A few numerical tests illustrate
the accuracy and efficiency of the method; 2000 Academic Press
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1. INTRODUCTION

The first implementations of spectral methods using orthogonal polynomials in nol
periodic domains were based on Tau—Chebyshev technique [1-3]. For instance, for
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Poisson and Helmholtz equations of interest here, the early method of solution propo:
by Haidvogel and Zang [4] was based on a Tau—Chebyshev approximation. Such a met
consists of a direct algorithm for 2D elliptic equations in a rectangular region exploitin
the variable separation by means of a diagonalization in one direction; see also [2, p. 1:
This algorithm, together with some iterative versions of it, was subsequently generaliz
by Haldenwanget al.[5] to solve three-dimensional elliptic problems under general non
homogenous boundary conditions.

In the last ten years, spectral methods have witnessed a growing interest in collocal
methods relying upon Lagrangian bases as well as in variational formulations of Galerl
type using Legendre polynomials [6]; see also [7]. In particular, in the context of the Galerk
method, Jie Shen [8] introduced a new basis of Legendre polynomials to solve Helmholtz ¢
biharmonic problems in two dimensions by diagonalization. Shen'’s basis has the interest
property of being orthogonal in the energy norm (i.e., tfenorm of the first derivative
of the variable), so that the diagonalization has to be performed on the mass matrix wh
has a very simple pentadiagonal profile. In Shen’s algorithm, the spectral decompositiot
performed only in one spatial direction, and the algorithm has been extended also to ¢
with a spectral representation based on Chebyshev polynomials [9]. As a matter of fe
the mass diagonalization for the Legendre approximation can be applied in both spa
directions. This has been shown by the present authors in [10], where the idea of a ft
discrete lifting for enforcing nonhomogeneous Dirichlet boundary conditions for the 2
Helmholtz equation has also been introduced. In fact, in a variational setting the liftir
of the Dirichlet data represents, in general, the most appropriate way of accounting
this kind of boundary conditions, cf. Strang and Fix [11], and provides, in particular, th
simplest way of accommodating numerically the compatibility conditions existing amon
the Dirichlet data of the continuum problem, as shown by Bernardi and Maday [6]. F
instance, the lifting proposed in [10] for the Galerkin—Legendre spectral approximatic
of the 2D elliptic equation pivots on the compatibility conditions at the four corners by
two-step process to account for the boundary values prescribed first at the corners and
on the four sides of the rectangular domain.

The aim of this paper is to describe a direct spectral solver for the 3D Helmholtz equati
in a rectangular box based on the Galerkin—Legendre spectral approximation. The propc
algorithm relies upon the diagonalization of the three mass matrices in the three spa
directions and uses a lifting of the Dirichlet boundary values which extends the one adop
in two dimensions. Quite obviously, the lifting for the 3D problem will be performed in
three steps to account for the corners values, the edge values, and the face values o
Dirichlet condition, the result of each step being required for executing the next one.

As it will be shown in the following, the most complex component of the propose
method is in fact this three-step lifting. The point is that such a lifting is necessary |
transform the direct (Cartesian) product structure of the problem in the physical spe
into the direct product in the space of the Legendre coefficients. In this manner one «
build a spectral method for 3D problems relying upon the solution of only one-dimension
subproblems which thus implement the idea of variable separation in the transformed sp
of Legendre coefficients. The development of the algorithm has required us to introduc
notation suitable for representing all the operations of matrix multiplication which must k
performed on the three-dimensional array of the Legendre coefficients of the unknown. T
notation proposed in the paper may appear somewhat complex but we have been unak
find an alternative one which could be more convenient for the analysis and the compt
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implementation of the new solution method. Such a complexity is not met, of course, wh
local discretizations, such as those offered by finite differences or elements, are adop
in which case the standard tensor product notation is sufficient to derive direct soluti
algorithms for rectangular domains; see, e.g., the classical work by latradb|12].

Anyhow, despite its notational complexity, the proposed three-step lifting for the spectr
Galerkin method represents a small fraction of the total computational effort needed to so
a given 3D problem. In fact, as it will be shown by the numerical tests, the solution cost
associated mainly with evaluating the perturbation of the right hand side by the lifting ar
the similarity transformations that exploit the eigenvector decompositions, letting aside t
cost of the initialization phase to obtain the point values of the basis functions farthe
projection of the data and to solve the eigenproblems. In this respect, it must be stressed
the perturbation of the right hand side is a step needed in Galerkin as well as in collocat
methods based on Gauss—Lobatto grid points. Therefore, the cost of such a perturba
constitutes a bound for any method, either spectral Galerkin or pseudospectral collocati
based on eigenstructure decomposition.

The present paper is organized as follows. In Section 2 we recall the Legendre basis |
posed by Shen [8] for approximating differential equations in one dimension, augment
in order to allow a discrete lifting of the prescribed boundary values [10]. Section 3 dt
scribes the spectral approximation of the 3D Helmholtz equation supplemented by nonl
mogeneous Dirichlet conditions, by means of the Galerkin—Legendre formulation. First,
Subsection 3.1 we define the differential boundary value problem and the spectral expan:
of its solution, by introducing a special notation particularly convenient for the represent
tion of the algorithm which fully exploits the variable separation in three dimensions. The
Subsection 3.2 addresses the issue of compatibility conditions on the Dirichlet bound:
values prescribed on the six faces of the 3D rectangular domain. The compatibility con
tions allow us to perform the lifting of the nonhomogeneous Dirichlet data in a three-st
process described in Subsection 3.3. These steps account for the boundary values spet
at the vertices, along the edges and on the faces, in succession, in full compliance v
variable separation. The derivation of the basic formulas for the edge and face compone
of the lifting is relegated in the Appendix, where the set of all of the discrete Dirichle
data used by our lifting is also displayed. The three-step lifting is then used to pertu
the right hand side of the system of discrete equations (Subsection 3.4). The homogen
Dirichlet boundary value problem so obtained is finally solved by a triple diagonalizatio
algorithm relying on the eigenstructure of the three 1D mass matrices associated with
Legendre approximation in each spatial direction, as described in Subsection 3.5. A f
numerical tests assessing the spectral accuracy of the proposed direct method are pres
in Section 4. The last section is devoted to the concluding remarks.

2. GALERKIN-LEGENDRE APPROXIMATION

In this section, the Galerkin—Legendre approximation of a second order linear OC
—U” 4+ yu=s(x), with y a nonnegative constant, is considered. The explicit form of the
stiffness and mass matrix is given, following the derivation of Shen [8] and including th
treatment of nonhomogeneous boundary conditions at the interval extremes.

Let us consider the basis for representing functions @&fined on the intervaH1, 1],

{LEx),0<n < N} = (1, x/v2, ko1(1 = xP)L, ;(X),2<n < N},



SPECTRAL SOLUTION OF 3D HELMHOLTZ EQUATION 457

wherek, = (/n+ 1/2)/(n+n?) andL,(x),n=0, 1,2, ..., are the Legendre polynomi-
als. ThusL?(x) is a polynomial of degrea for anyn> 0 and, forn> 2, one has Shen'’s
basis [8]

Ln72(X) - Ln(X)

RS- T

The normalization oL /;(x) for n > 0 has been chosen to make the stiffness matrix coincider
with the unit matrix of proper dimension, but for the constant mode. In fact, once the stiffne
matrix D is defined by

1
%kz/‘qayqﬂydﬁ n,k>0,
-1

it is immediate to see that

dn,k - (Sn’k, n, k > l,
Gho = don =0, n=>0,

3n.k being the Kronecker symbol, as a consequence of the Sturm-Liouville equation
Jacobi polynomials and of the normalization

1
/;LMMLMde=2n+1

For further reference, theN + 1) x (N + 1) stiffness matrix is denoted B]jb to remind
that its leading elemeridq o is zero; namely, we write

Similarly, the(N + 1) x (N + 1) mass matrixM is defined by

1
Mk = / Li()Lg(x)dx, n,k=>0.
-1

By elementary properties of Jacobi polynomials or as demonstrated in [8], the only nc
zero elements oM are located along the diagonal and two codiagonals, according to tt
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pentadiagonal profile,

0 1 2 3 4 N—-2 N-1 N
0 c 0 a
1 0 ¢¢ 0 &«
2 a 0 ¢ 0 a
3 aa 0 ¢ O
M= 4 a 0 o 0
0 0 an_3
N—2 .0 cn2 0 an-o
N-1 an.3 0 ocv1 O
N a2 O CN
A direct calculation gives
= \/? a = = - n>2
% 3 ' 3/5 & @n+1/@n=12n+3)’ -
Co=2, €= } Cn 2

= n>2
3 (2n—3)(2n + 1)

3. THE 3D HELMHOLTZ EQUATION

3.1. Spectral Approximation of the Helmholtz Equation

Let us consider the Dirichlet problem for the Helmholtz operator with unknown
u(x, y, z) in the cubic regior2 = (-1, 1)3,

(—=VZ4+pu=s(X,¥,2), Ulg = a(qe),

wherey is a nonnegative constarg(x, y, z) is a known source term defined {a, and
a(ryq) is the Dirichlet boundary datum specified 2.

The spatial discretization of the Helmholtz equation is done by means of the Galerk
projection method employing the Legendre bdsjgx), n> 0, defined in Section 2. The
approximate solution, is expanded in the triple series

K

(]

k=0
Lk(@

| J
U, y.2) =Y Li uge Liy L
i—0 i=0

Symbol”{ is used to indicate a summation acting on the expression on the left, inste
of on the right, as the usudl’. The special symbdl{ was introduced in [10] to be fully
adherent with the matrix notation used in [2] for two-dimensional elliptic equations. Th
present problem being three-dimensional, we introduce also the new dyfitbaleal with
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the summation along the “third” dimension. Indicating the three summations in the thri
spatial directions according to this special notation turns out to be particularly convenie
in the derivation of the algorithms to be presented below.

3.2. Compaitibility of the Dirichlet Data

The distribution of the Dirichlet boundary values is specified on the six faces of th
rectangular domaif. This means that the following six functions, each of two variables.
are known for anyx| <1, |y| <1, and|z| <1,

a"(y,2=a(-1y,2, a(y.»=adly.2,
a™(x, z) = a(x, —1, 2), a2 (x, z) = a(x, 1, 2),

a"a(x,y) =ax,y, -1, a "%, y)=a(x,y,1).

These functions areot independent since they must satisfy compatibility conditions. In
fact, as shown by Grisvard [13, Theorem 1.5.1.7], in order for the funetios,) of the
Dirichlet datum to be the trace of a function belonging to the Sobolev sgace-1, 1)3),
it must satisfy a set of compatibility conditions of an integral character. Such conditiol
reduce themselves to pointwise continuity along the twelve edges of the cube and at
eight vertices, if the datura can be assumed to be piecewise continuous and bounded,
it is most often in practice.

Let us examine first the set of compatibility conditions along the edges parallel to tl
x axis and consider in particular the edpe <1, y=-—1, andz=—1. The continuity
along this edge means that we have the following constraint between the two functic
afM(x, z) =a(x, —1, z) anda % (x, y) =a(x, y, —1), defined above,

atM(x, —1) = a4 (x, —1).

This allows us to introduce the one-variable functastt (x) = a(x, —1, —1) representing
the distribution of the Dirichlet value along the considered edge, which is the intersecti
of the two faces. The application of the same argument to all the other edges leads u
define the following twelve functions of only one variable,

a®(x) =a(x, -1, -1, a®™(y)=a(-1y,-1), a**(»=a(-1 -1,2),
a®(x) =ax,+1 -1, a*(y)=a+ly, -1, a*?*(2 =a(+1 —-1,2),
a®®(x) =ax,+1,+1), a*™(y)=a+ly,+1), a°®3@2 =a(+1, +1,2),
a®™(x) = a(x, -1,+1), a®™(y)=a(-1vy,+1), a®%(z2) = a(-1, +1, 2),

which represent the distribution of the Dirichlet boundary value along the edges of tl
prism.

The continuity of the Dirichlet data at the eight vertices (called also “corners”) of th
prismimplies that the functions of a single variable justintroduced must satisfy compatibili
conditions at these eight points. We are therefore led to identify the (unique) value prescril
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at each corner of the prism by defining the corner values

albn — a(—l, —l, _1)7 a|m — a(—]_7 l, —1),

a®n=a(, -1, -1), a™=a(l,1, -1,
ab =a(-1,-1,1), a"=a(-1,11),
a® —a(1, -1, 1), a® =a(l,1,1),

where superscripts | and r denote left and right, b and t denote bottom and top, and n al
denote near and far position of the considered corner.

3.3. Three-Step Lifting of the Dirichlet Data

In the following we introduce a lifting of the nonhomogeneous Dirichlet condition whick
accounts in succession for the boundary values specified at the vertices, along the e
and on the faces of the boundary of the rectangular re@ioAs it will become evident
later, it is precisely the cascadic account of the Dirichlet boundary data belonging to the
three different sets that allows us to develop an algorithm implementing the separation
variables in the space of the Legendre coefficients, and exploiting the direct product nat
of the considered spectral approximation.

The lifting of the Dirichlet boundary datum(r;g) consists of expressing the solution
uy(X, Y, 2) in two parts, as

uN(Xv yv Z) - uO,N(Xv y7 Z) + Ua,N(Xs y? Z)1

whereug (X, Y, 2) satisfies a homogeneous Dirichlet condition, whilg, (X, y, ) is an
arbitrary function whose trace @12 approximatesi(ryq).
To determine the liftingl, (X, Y, 2) we choose to splitit in three separate contributions,

d f
Uan(X, Y, 2) = U™ X, Y, 2) + ug J9TX, Y, 2) + Ui, Y. 2),

where uz%"*"(x, y, z) is the component to account for nonzero Dirichlet values at the
corners usi%%x, y, 2) is the component to relief nonzero Dirichlet values on ¢dges
andu‘;‘”}ﬁ,es(x, y, 2) is the component to relief nonzero Dirichlet values onftwes

The first componentg"*'{(x, y, 2) is determined by a collocative approach, which
enables one to satisfy the Dirichlet boundary condition in a strong sense exclusively
the corners. This is indeed a useful property, especially if the method is used as a star
point for applications to more complex domains via a domain decomposition approac
The second and the third components of the lifting are instead evaluated by the Galerk
Legendre approach using théprojection of the boundary data. The usé& éprojectionsin
the proposed way of enforcing the Dirichlet condition can lead to a suboptimal converger
rate of the approximation with respect to the strongéf? projection, as pointed out by a
reviewer. This lack of optimality is however expected to be barely felt in applications an
is anyway compensated by the simplicity of th&projection in the implementation.

The complete lifting including the three components is finally used to perturb the rigl
hand side of the discrete Helmholtz equation to obtain the final system of algebre
equations.
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X

FIG. 1. Partitioning of the array of the expansion coefficients for the 3D Helmholtz problem in a rectangul
domain.

It is convenient to introduce the following partitioning of the three-dimensional array
of the Legendre coefficients,

u© | uw u@ | u®

U= ubl u® - vy '

whereU© is the 2x 2 x 2 array associated with the basis elements which are nonze
on the corners; moreoved™, U™, andU@ are(l — 1) x2x 2, 2x (J — 1) x 2, and

2 x 2 x (K — 1) arrays associated with basis functions which are nonzero respectively
the horizontal, vertical, and in-depth edges of the cube, but for the extremesiitfign,
UM, andU® are2x (J—1) x (K —1), (I —1) x2x (K —=1),and(l —=1) x (J—1) x 2
arrays associated with basis functions which are nonzero on the square faces of the ct
normal to the axig, y, andz, respectively, but vanishing on the sides of each face. Finally
Uisthe(l — 1) x (J —1) x (K — 1) array which contains the coefficients pertaining only
to the “internal modes,” that is, modes vanishing on the boundary. The partitioning is sho
in Fig. 1. The meaning of the superscripts (h), (v), and (d) is with reference to a system

1In the following, boldface capital letters will always indicate three-dimensional arrays, namely, arrays wi
three indices, each with a range exterit. On the contrary, two-dimensional arrays (i.e., ordinary matrices) will
be denoted by light (nonbold) capital letters.
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Cartesian coordinates with theaxis placed horizontally, thg axis vertically, and the
axis along the depth direction. The naming of the partitioning should not be confused wi
the actual placement of the rectangular subart{sandU" in the complete array,
where the first index correspondsx@nd the second index tpaccording to the standard
usage.

By virtue of this partitioning, the array representation of the Legendre coefficients of tt
lifting ua (X, Y, 2) will be

Ug:) | Ug/) U;d) | UgH)
U = 9 9
AT U] uP u¥l o

where0 denotes the zero array of sige— 1) x (J — 1) x (K — 1).

3.3.1. Corner (vertex) component of the liftingAs anticipated, the corner component
ugx"e"ix, y, 2) of the lifting (see the left drawing in Fig. 2) is determined by a collocative

approach, i.e., we write

ug%nerS(_l’ _1’ _1) — albn’ ug?,\r‘nerS(_l’ 1’ _1) — altn’

ug%neril’ -1, _1) — arbn’ ug(’)hr‘nerS(L 1, _1) _ artn’
ug%nerS(_l’ _1’ 1) — a_Ibf’ ug%nerS(_l’ 1’ 1) — altf’
ug%neril’ _17 1) — arbf’ ug(’)’\r‘neril7 1, 1) — artf.

Itis natural to seek this part of the lifting in the subspace spanned by the basis functions
(X, ¥, 2) which are nonzero on the corners, namely,

Lo)LoWLo(@  Lo()Li(Y)Ls(2)
LI0Ls(yLs@  LixLi(yLs@
Lo)Lo(NLi(@  Lo)Li(y)Li(2)
Li0Ls(yLi@  LiX)LI(YLi(D.

FIG. 2. Schematic representation of the three-step process to lift the Dirichlet condition of a 3D Helmhol
problem in a rectangular domain. Left, corner component; middle, edge component; right, face component.
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Lo(@
L1(2)
Lo(y)
UgONTr'Ier%x7 Y, 2) = (L*(X) L*(X)) Ug(iC) 0 )
| T (Lﬂw

Accordingly, we have

We use the notation of placing the matrices associated with the third dimeagiom the
top of the (3D) array to indicate the multiplication “along its third dimension,” namely the
dimension of the thickness or depth of the array.

Therefore the system of eight equations can be written compactly as

L(=D)  Li(D)

<LH—D LﬂD)
<La—n Lﬁ—b) e (La—n LHD)
51 LI : Li(-1) Li@

albn altn a| bf altf
- abh gt bt gt

Ue(l(:) (O, 0’ O) — é(albn + altn + arbn + artn + albf + altf + arbf + artf)7

and is nonsingular. A simple calculation gives

Ua(lc)(l, 0,0) = 452(_albn _ a_Itn + arbn + atn — aIbf _ aItf + arbf + artf)’
UZ:(IC) 0,1,0) = 4j§(_albn + aItn _ arbn + ath — a.Ibf + aItf _ arbf + artf)’

Ue(‘c)(l’ 1,0 = %(albn _ altn _ arbn + ann + aIbf _ altf _ arbf + artf),

Ue(lc) 0,0,1) = 1 (_albn _ altn _ arbn _gmn + aIbf + aItf + arbf + artf)’

42

1
UE(IC)(]" 0,1) = Z.(albn + aItn _ arbn _atn _ aIbf _ altf + arbf + artf),
Ua(c) 0,1,1) = %(albn _ aItn + arbn —_atn_ aIbf + aItf _ arbf + artf)’

Ue(‘c)(l’ 1,1 = 1 (_albn + aItn + arbn _gnn + albf _ aItf _ arbf + artf)'

2.2

3.3.2. Edge component of the liftingOnceU® has been determined, the second step
of the lifting consists in evaluating its edge componejfi'fes(x, Yy, ), namely, to compute
Ul U, andU@ by means of the (1D) Galerkin—Legendre approach (see the midd
drawing in Fig. 2). The functioni®®®x, y, z) will be sought in the subspace spanned
by basis functions oH1(2) that are zero on the corners and nonzero on the edges, al
whose trace on the edges is the orthogonal projection, in the senseldfthg, 1) inner-

product, of the trace of the boundary datum once the corner nonhomogeneous part has |
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subtracted. In other terms, we have to deternifi@(x, y, z) such that

edges ycorner
>/ vu Z UER™:

edge! edge!

where v(X, Yy, z) represents any function belonging to the same subspace in whic
u%%%x, v, z) is sought for.
Writing the boundary integral as the sum of the contributions due to the twelve edge

the orthogonal projection can be written as

4

Z {/ vuh edges+/ vuv edges+/ vud edges}
— ex ey ez

4
> L oy + [ vl -y [ e ).

where theex, £=1, ..., 4, denote the set of four edges parallel toxtexis and where we
used the notatlouh edges_ gdﬁeﬁu4 o= =599 +1.+1), and similarly in the other two
directions.

By virtue of the vanishing of any at the corners, the contributions due to the horizontal,
vertical, and depth direction edges can be uncoupled from each other by choosing |
functions which vanish on one set of four parallel edges at a time and by expanding 1
lifting in the same basis. Eventually, the whole problem separates in three independ
subproblems, each of them being associated with four parallel edges,

4 4
h-edges__ ex corner:
E / vy _E / v(@®™ —ug"y,
=1 &X =17 8%
4

Z/ UUV edges Z/ % — co’\rlnerﬁ’
ey ey

=1
4

d-edges __ ez corner:
> [ o —Z/ v(@s — yme,
=182 =1"82

Letus express each of the three problems in a discrete form and consider first the prob
associated with the horizontal edges, which is written more precisely

Z/ vuedges Z/ go;ner i
ex

with the edge-trace of the functions being understood in the integrals, namely|ey, ,
USYe= USW¥™ex, andugomers— ugomers|,, . A detailed derivation of the solution of the prob-
lem associated with the four horizontal edges is given in Appendix A.2. The expression oft
final solution can be recast in matrix form by introducing the vector of the Gauss—Legenc

weights

w={wg,1l<g=<I+1},
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and the arrayl of values of the Legendre functions computed at the Gauss—Legend
nodes? namely,

L={L(g,1)=L{(Xg),1<g=<1+10<ic<I}

Moreover, itis necessary to introduce the four vectors of the values of the Dirichlet conditio
on the four horizontal edgea®¢(x), a®*%(x), a®*(x), anda®“(x), evaluated at the same
guadrature points,

AP ={a®(xg) =a(Xq, —1,-1), 1<g=<1+1}
AP = {a%%(xg) = a(xg, +1,-1), 1<g=<1+1}
AP = {a%%(xg) = a(Xg, +1,+1), 1<g=<1+1}
AT ={a®(xg) =a(Xg, —1,+1), 1<g=<1+1}.

Finally, we have to introduce the partitioning of the mass maitrix,

M© MbOT
M= NV
Interms of all these quantities, the subcomponent of the lifting associated with the horizor
edges is achieved by solving the following four uncoupled systems of equations,

1
MU (-, 0,0) = ZET[W * (AT %2 4 40 4 42] = MPUL (-, 0,0),

1
MUP (-, 1,0) = oW ﬁET[W* (=A% A% 4 478 — 4] - MPULO (- 1,0),

1
MUa(Lh)(-,O, 1 = Z_ﬁET[W* (_Aex1 L +Ae><4)] _ M(h)ua(C)(.’ 0,1,

1
MU (-, 1,1) = EﬁT[w * (A — AP 4 4 — 4P9] - MPUO (1, D),

where the symbok denotes the element-by-element multiplication of vectors. It is inter
esting to remark that, irrespective of the decoupling in four mass matrix problems, for t
adopted basis the edge component of the lifting associated with the four horizontal ed
cannot be evaluated dealing with the Dirichlet values on each edge independently from
other three edges.

The same procedure can be adopted for the four vertical edges and for the four ed
in the depth direction. The result is similar to the former expression by virtue of the dire
product nature of the basis provided we introduce a partitioning for the mass madrices
andQ in they andz direction, as

N© NW Q(C) Q(d)
N = NOT N and Q= oot o )’
2Here and in the following, script letters are used to indicate quantities evaluated at, or associated with, Gal
Legendre quadrature points.

3 sans serif letters are used throughout to denote vectors, matrices, and arrays which pertain only to interr
modes, that is, to basis functions vanishing at the extremes of the interval.
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and define the vector={wy, 1<g<J+1} containing the weights of the Gauss—
Legendre quadrature formula with+ 1 nodes and the matriy ={£(g, j) = L} (Xg),
1<g=<J+1,0<]<J}, with similar definitions fors and K for the expansion in the
variable. Moreover, we need to introduce the vectSfsand4®%, ¢ = 1, 2, 3, 4, according
to the definitions given in Appendix A.1. The solution for the four vertical edges reads

1
U;")(O, -,0)N= Z[(Aeyl +Aeyz +Aem +Aey4)*V]Tj_ Uéc)(O, -,O)N(V),

1
U2, ON = Sop [ a4 =A%) 0] 7T — U - ON,

1
Ui (0. DN = (- — % 4 4% 4% o] T — U0, DN,

1
U@, -, HN = E[(Aeyl — A A T T U0, -, DN

while that for the four edges in the depth direction is

Q 1 Q(d)
Ua(ld)(o’ 0,)= ZKAeZl + 8% + ABB + Aem)*u]TK _ U;C)(O’ 0, ),
0 1 Q(d)
u®@,0,)= 2—\/2[(—Aezl + A% 4 %% — %) TR — U9 (1,0, ),
Q(d)

Q
U©,1, )= SR P 4 %) T - U0, 1, ),

1 ez
——[(—A 1
Zﬁ[(

Q 1 Q@
U@ 1= E[(Aezl — AB2 PR T - U9, 1, ).

In conclusion, the edge component of the lifting requires us to solvd 4 4 mass matrix
problems of sizé¢l — 1), (J — 1), and(K — 1), respectively. It is important to note that
the lifting for the edge boundary values depends on the previously computed result of
corner component. In other words, the corner component of the lifting acts itself as a liftir
for performing the edge component of the lifting.

3.3.3. Face component of the liftingOnceU?, UM, UY, andU@ have been deter-
mined, the third step of the lifting consists in evaluating its face comparfgftx, y, 2),
namely, to computel ™, UL, andU® by means of the (2D) Galerkin—Legendre approach
(see the right drawing in Fig. 2). The functiuﬁﬁfs(x, y, z) will be sought in the subspace
spanned by basis functions Bift($2) that are zero on the corners and on the edges while
nonzero on the faces, and whose trace on the faces is the orthogonal projection, in the s
of the L2((—1, 1)) inner product, of the trace of the boundary datum once the corner ar
edge nonhomogeneous parts have been subtracted. In other terms, we have to deter
ul2eex, y, ) such that

N
faces __ edges corner:
[ i [ oz,
I IQ

where v(X, Yy, z) represents any function belonging to the same subspace in whic
ufaeesx, y, 2) is sought.
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Writing the boundary integral as the sum of the contributions due to the six faces, t
orthogonal projection can be written as

H-faces V-faces D-faces
[t [ s [ e
F X, FY, FZ,

FX, edges corner:

/ (@™ — ugfees— uen

FY, edges corner FZ edges corner
+/FYv(a ¢ _ 3+/sz(a ¢ —ugos— ugyy 3}
4 14

whereF X,, £ =1, 2, denote the pair of square faces normal toxhaxis and where we
introduced the notatlouH faCES_ ufaceﬁpxlupxz ;ﬁ‘eﬁ(ﬂ,y,z), and similarly for the other
two pairs of faces.

By virtue of the vanishing of any at the corners and on the edges, the contributions du
to the horizontal, vertical, and depth direction edges can be uncoupled from each othel
choosing test functions which vanish on two sets of parallel faces, among the total of thr
at a time and by expanding the lifting in the same basis. Eventually, the whole proble
separates into three independent ones, each of them being associated with two parallel f:

H faces FX@ _ edges_ ycorner
a,N a,N )
FX FX
V faces FY{ _ edges_ ucornera
Uan anN ’

FY[
D faces FZz _ edges_ ycorner
Uan aN :
Fz Fz

Let us consider the problem associated with the faces whose normal is oriented as
z-axis first, which is written more precisely as

faces FZZ _ edges_ ycorner
Uan aN ’
FZ FZ

with the trace of functions being understood in the integrals, namedyy|rz,, uf,f}gesz
ufaceq,, | ug9°°= u%9°f,, and ugomers= ycmerye , . As shown in Appendix A.3, by

introducing the two diagonal matrices of the Gauss—Legendre weights,

w1 V1
W = . and V=
Wi +1 Vi+1

and the two matrices of the values of the specified functadrfs(x, y) anda"%2(x, y) at



468 AUTERI AND QUARTAPELLE
the Gauss—-Legendre quadrature points on the two considered faces,

AF2 = {aF %1 (xg, Yo) = a(Xg, Yh, —1), 1< g <1 +1,1<h<J+1},
AF% = (aF%2(xg, yh) = a(Xg, ¥h, 1), 1 <g <1 +1,1<h<J+1}

one obtains two uncoupled systems to perform the lifting on the faces orthogonalzo th
direction,

1
MU (. ON = SLTWATA + ATV — MU (- ON®
_ M(h)U&(lV)(" LON — M(h)Ue(\C)(" L ONM,
1
V2
_ M(h)Ua(v)(.’ SN — M(h)U;C)(', S DNW,

MUL (-, DN = —=LTW(-AT2 4 AFZ) VT — MU (., -, HNW

It must be noticed that the determination of the face component of the lifting is possib
only after the other two components, associated with the edges normal to the conside
faces and with the corners, have already been determined. In fact the expressions al
show that the previously computéd?”’ andU'? as well asU(© enter the right-hand side
of the equations giving the face component of the lifting as a known perturbation: stated
other terms, the arrays of the first two steps of the complete lifting act themselves as a lifti
for evaluating the third component of the lifting associated with the faces. It is precisely
very peculiar nested structure of a lifting within the lifting that made the lifting for the three
dimensional equation elusive so far. Finally, one can also remark that, again, irrespective
the decoupling of the two problems for Legendre coefficients associated with the conside
two faces, each problem involves the Dirichlet data prescribed on both faces: in other wor
the face component of the lifting cannot be evaluated on a face-by-face base.

The same procedure can be adopted for the other two face pairs. The result is simila
the former expression by virtue of the direct product nature of the basis provided we rec
the partitioning for the mass matricesandQ in they andz direction and introduce the
matricesAF* and AFY¢, ¢ =1, 2, of the Dirichlet values at the Gauss—Legendre points
belonging to the other two face pairs, as defined in Appendix A.1. The solution for the tw
faces orthogonal to thg direction reads

o, L Q(d)
MUL(,0,) = ZLTW(AT + AT UK — MU (., 0,)
o) Q(d)
. M(h)Ua(ld)(" 0,)— M(h)U;C)(', 0,-),
0 L Q(d)
MUY (1, )= = LTW (= AP 4 AR UK — MU, 1, )

/2

o) Q(d)
_ M(h)Ua(\d)(" 1,)— M(h)U;C)(w 1),
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while that for the two faces orthogonal to thelirection is

Q 1 Q@
uir o, yN= 5ij(AFXl + AP YK—-uM (O, )N

Q (d)
~u®@, -, )NV -UL(@,-, )NV,

H Q 1 .+ FX FX Q(d)
ulPa@, . yN= ﬁj V(AT 4 AT YK-Uu @, -, )N
Q(d)

0 &
_Ua( )(17 %y ) N(V) _UQC)(la y ) N(V)

In conclusion, the face component of the lifting requires us to solye&22- 2 two-
dimensional mass matrix problems; each of these problems is solved, considering
instance the faces normal to tkeaxis, by solving(l — 1) and (J — 1) uncoupled one-
dimensional mass matrix problems of size— 1) and(l — 1), respectively.

3.4. Perturbation of the Right-Hand Side

The lifting of the Dirichlet datum can be seen as a perturbation on the right-hand side
the linear system of the discretized version of the Helmholtz equation.
Consider first the Helmholtz equation written in weak form after integration by parts,

au
(V(LFLILY), Vun) + v (LFLiL; un) = (L;*LjfL*,s)Jrj{ L;*L]fl_;a—r:“,
aQ
for 0<di, j,k) <, J, K), where the shorthantii*L]‘ r= L;"(x)LT(y)Lf;(z) has been
used and the basis functions have been already put in place of the generic test funct

Recalling the liftingun = ug N + U4 N, the weak Helmholtz equation above in matrix form
reads

o Q Q, F Q .
DUN+MUE+MUN+y MUN = S+ boundary integral

whereU =Ug + U,, E andF are they- and z-counterpart of matrixD, and S repre-
sents thel.? projection of the sourcs(x, y, z) onto the Legendre basis, namedy; x =
(L)L (YL (2), s(x, Y, 2)), 0= @, j, k) =<, J, K), the integral being evaluated nu-
merically by means of the direct-product Gauss—Legendre quadrature formula.

We have to note that a convention is implicit in the hybrid array/matrix expression
as the one written above. It is always understood that any matrix (always denoted b
nonbold capital letter) that acts on a (three-dimensional) array (always denoted by b
capital letter) actually multiplies all the planes with the other array index, not involved i
the matrix multiplication, fixed. This is illustrated in Fig. 3.

Since the Dirichlet condition is taken into account by the lifting, only the test func
tions vanishing on the boundary are needed, represented bgténeal basis functions
LF(OLj(y)Lg(2) for 2< G, j,k)y=< (1,3J,K). By exploiting the array and matrix
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FIG. 3. Schematic of the matrix multiplication structure of the 3D Helmholtz problem discretized by the
Galerkin—Legendre spectral method.

partitionings introduced before, the system of equations pertaining to these functions

sumes the form
Q(d) Q(d)
(%) (%)

(p™ D) U (N,sl))-l-(M(h) M) U <E;_V)>

(F(d)> <Q(d)
F o)
NW

+(M® M) U <N>+y(M<h) M) U <NI3/))=S,

where
Ua(;:) | U;(1V) Uéd) U;H)
U=U,+Ug= ,
2 ubl u®P u\l U

The right-hand side is the L? projection of the source term onto the basis functions per-
taining only to the internal Legendre modes. Similarly, all other sans serif letters appeari
in the last two equations are defined by

U={ujk.2=<(,j,k=<,3,K)},

M= {m; = (L7 (x), L{(x)),2 < (i,i") < 1},

N={njj = Ljy, L), 2=, i) <3}

Q = {qk,k’ = (Lﬁ(Z), L*’(Z))7 2 = (k7 k/) = K}’

and therefore involves only the internal Legendre modes in each spatial direction.
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Since all the elements a3, U, UY, UQ, UM UV, andUPD are known, the
equation above can be rewritten transferring all the terms involving known quantities in t
right-hand side. In particular, for the Legendre basis we are working with, the submatric
D™, E™, andF @ are null and the matrices, £, andF of the internal diagonal component
are identity matrices of suitable dimension. This implies a substantial simplification of tt
explicit expression of the four terms contained in the three-dimensional Helmholtz equatic
Considering the first term, we find

(Q(d)
o)

N Q(d) Q(d) Q 0
(D™ D) U ( N ) =UPN® 4+ UPN+ UY'N™ + UN,

since matrixD™ is null andD is simply the identity matrix of dimensioh— 1. A similar
calculation for the two derivative terms in the other directigrandz gives

(%)
Q Q(d) Q(d) o)

V)
(MO M) U (EE)ZM@u;V) +MUP + MOUP + MU

and

(")

(MO M) U (NI;V)> = MOUDNY + MUYNY + MOUPN + MUN.

The calculation of the nonderivative term proportionaptis slightly more complicated

and gives
Q(d)
(%)

w Q(d) Q(d) Q(d) Q(d)
(MO M) U N = MOUON® + MUPNY + MOUY N+ MUPN
N
Q Q Q

+MOUON® + MUYNY + MOUIN + MUN.
The final system of discrete equations to be solved assumes the form

Q Q Q
UN+ MU+MUN+yMUN=R,
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where the perturbed right-hand side includes the lifting according to the definition

Q(d) Q(d) Q Q(d) Q(d)
R=S— UPNY - UPN — UYNV - MOPUY - MuP

Q
h H h d \% h H
— M )U; ) _ M ¢ )Ué)N(V) _ MU; INM — M ¢ )Ué N
Q(d) Q(d) Q(d)
h h h h d
—y M ¢ )UgC)NM +M U;)N(V) + M ¢ )UgV)N—i- M ¢ )Ug)N(V)

Q@ Q Q
+MUPN+MUYNY + MOUPN

From the computational viewpoint, the perturbation of the right-hand side given by tt
expression above is not too expensive to be evaluated, since, for the considered Galer
Legendre method, the matrices corresponding to all the off-diagonal blocks contain or
two nonzero elements and the three matrib&sN, and Q are pentadiagonal, with only
three nonzero diagonals. The matrix expression is however a result of a general valid
irrespective of the basis adopted.

3.5. Mass-Matrix-Based Triple Diagonalization Algorithm

To solve this linear system, in a preliminary step we solve the symmetric eigenvall
problem [14] for the three pentadiagonal mass matride#V, andQ, namely,

Mw® =3w®,  2<i<I,W=w@ . w],
ND =gvD, 2<j<3v=[v® . v,
0z® =gz®, 2<k=<K,Zz=[z? ..., z"1],

so that
w'Mw=A, VNv=x, Z'0z=e,

where A, ¥, and © denote the diagonal matrices of the eigenvalued/HfN, and Q,
respectively.
As a consequence of the triple similarity transformation

b4
R—>R=WTRV

and of the analogous one f&f, the linear system becomes

S S ]
US+AU+AUS +yAUS =R,
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which is solved, componentwise, by means of

Lk
0j6k + Xibk + Aioj + yriojbk

Ujk= 2<(,j,k=<,JK).

The sought for solution is then obtained by computing the anti-transform

ZT
U—>UuU=wuv'

and finally mergindJwith the precomputed Legendre coefficients of the liftigg, (X, vy, 2),
to give

C v d H
ue| Uy ue| ud

ubl u® UV U

4. NUMERICAL TESTS

The proposed direct solution algorithm for the 3D Helmholtz equation has been ir
plemented exploiting the matrix/array notation described in the previous sections. Desy
the complexity of the expression defining the lifted right-hand &d&s implementation
is relatively straightforward once suitable primitives are introduced to perforraghese
matrix multiplications in the three directions, taking into account the block partitioning o
the mass matrices.

The first test case we solved is the Dirichlet problem for the Helmholtz equation wit
exact solution

U(x, Y, z) = cogmrX) cogmy) cogrz)

in the domairQ = (—1, 1), for y = 100. The results for the maximum pointwise value of
the erroruy — u are presented in Table | and illustrate the spectral accuracy of the methc

The algorithm can applied to any rectangular domain by introducing suitable scalir
coefficients associated to the three directions in the expressighadsmvell as in the triple
diagonalization explicit solution formula. This is shown by solving the same problem in tt
shifted and rescaled bax= (-2, 2) x (-1, 2) x (0.3, 2.2). Error results given in Table Il
confirm the spectral convergence.

TABLE |
Maximum Pointwise Error for the Solution
U= cosfrx) cosfry) cosgrz), 2 =(—1,1)%, v =100

I xJxK [lun — Ul
6x6x6 811x 103
12x12x 12 811x10°8
18x 18x 18 599x 104
24 x 24 x 24 836x 107+

12x 15x 18 285x 10°8
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TABLE Il
Maximum Pointwise Error for the Solution u = cosgrx) cosry) cos(rz),
2=(—2,3)x (-%,%) % (03,22),y=100

44
I xJIxK lun — Ul
6x6x6 159x 1072
12x 12x 12 554 x 1077
18x 18x 18 807 x 10713
24x 24 % 24 320x 107
12x 15x 18 492x 1077

Finally, a more challenging problem has been addressed in order to check the capab
of the numerical scheme for very high degree bases. We consider a Dirichlet—Helmhc
problem with exact solution

u(x,y, 2) = tanhiak - (r —ro)),

wherer = xX + yy+ zz, while «, k, andry are constant quantities. This solution corre-
sponds to a plane transition layer of thicknege hormal to the direction df and passing
through the point,. Considering the domaif = (—1, 1)% and takingro = (1, 1, 1), we
corner this layer in the region of the “trf” vertex. The results doe= 50 andk = (1, 2, 3)

are given in Table Il in terms of * and L2 norms ofuy — u. The spectral convergence
obtained in this test demonstrates the correctness of the boundary condition treatmer
the corner regions by the proposed lifting. The high accuracy is obtained thanks to 1
increasing resolution of the Legendre basis near the boundary.

In fact, despite the spectral convergence, the accuracy is lower when the transition la
is located in the interior of the domain, as shown by the results reported in Table IV for ti
test case with = (1, 1, 1) andro= (3, 2, 3).

The efficiency characteristics of the method are outlined by reporting the depender
of the execution times on the number of unknowns, in Fig. 4. Here the total CPU tirr
versusN = | = J =K is compared with théN\® and N* slopes, the latter being the ex-
pected asymptotic behaviour on account of the computational complexity of the similari
transformation component of the algorithm. The performance is better than expected
this may be a consequence of the super-scalar capability of the processor of the worksta
(HP-J2240) employed for the tests.

The relative computer cost of the different components of the algorithm are shown
Table V. It is interesting to note that the time needed to perform the lifting is only a sma

TABLE IlI
Errors for u= tanh(ak - (r — rg)), with a =50,k =(1, 2, 3),
andro=(1,1,1)

I=J=K llun —ulleo llun —ull
50 149x 1072 416x 107
100 569x 10°° 1.06x 107

150 607 x 1077 5.61x 1071
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TABLE IV
Errors for u= tanh(ak - (r — rg)), with « =50,k =(1, 1, 1),
—(3 3 3
andro=(3,3 3
I=J=K luy — Ulloo lun —ull2
50 183 683 x 1072
100 627 x 1072 1.85x 1072
150 692x 1073 1.70x 10
200 171x 1078 2.58x 10°°
TABLE V
Partial and Total CPU Times in Seconds
I=J=K Start Lifting Perturb. Solution Total
25 0.12 0.04 0.14 0.04 0.34
50 1.00 0.23 1.51 0.69 3.43
100 11.02 1.30 13.99 11.33 37.64
150 37.92 3.69 51.76 41.94 135.31
1.0x10* . T
Ng
N3
1.0x10° e
] . ]
I
1.0x10%4 i
) ] ]
[-*]
£
Nt
1.0x10' -
1.0x10% -
1.0x107! T T
10 100 1000
N

FIG. 4. Execution time vs the numbét of unknowns, compared with the slops$ andN*.
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fraction of the total in spite of the complexity of its formulation described in Subsection 3.:
The computational cost is nearly equally divided between the initialization phase (soluti
of the eigenproblem and evaluation of the basis functions at the Legendre points), |
perturbation of the right-hand side, and the solution by means of the triple similarity tran
formations given in Subsection 3.5. The right-hand side perturbation is always the mq
expensive part of the solution algorithm but, when the same equation has to be solved
several source functions under identical boundary conditions, this step can be perforn
once and for all, as well as the other preceding computational steps.

We note that a substantial decrease in the CPU times with respect to the reported figt
is achieved by replacing the Fortran 90 MATMUL built-in function by architecture opti-
mized BLAS subroutines. However, a detailed performance comparison of different co
implementations of the proposed algorithm, possibly across different platforms, is beyo
the scope of the present article.

5. CONCLUSIONS

Anew Galerkin—Legendre spectral method for the direct solution of Poisson or Helmhol
equations in three-dimensional rectangular domains under nonhomogeneous Dirichlet c
dition on the entire boundary has been presented. The method is an extension of Jie Sh
diagonalization algorithm for 2D problems [8] and employs a lifting of the Dirichlet daturr
to obtain the Legendre coefficients of the trace of the unknown. The lifting is performed
three subsequent steps to account for the values prescribed first at the vertices, then &
the edges, and finally on the faces of the rectangular domain, in compliance with the
isting compatibility conditions for the Dirichlet data on the six faces of the boundary. Th
Legendre coefficients associated with the components of the lifting other than the vertex ¢
are determined by thie? projection of the boundary values along the edges and on the fac:
through Gauss—Legendre numerical integration. The solution algorithm fully exploits t
direct product nature of the spectral approximation and reduces the solution of the 3D ellig
problem to a sequence of pentadiagonal symmetric linear problems and eigenproblems
the three 1D mass matrices in the Cartesian directions and of similarity transformations. |
performed numerical tests illustrate the spectral accuracy of the method and demonst
the possibility of solving 3D elliptic equations with @p(107) spectral unknowns very effi-
ciently. It must be emphasized that all the algorithmic components of the proposed mett
are intrinsically vectorial; moreover, owing to the complete independence of the matrix
array multiplications involved in the triple similarity transformations, a high degree o
parallelization of the algorithm is possible, in compliance with its direct product nature.

The present method can be extended to elliptic equations supplemented by the Neum
condition by introducing a different basis which allows us to enforce the derivative bounda
condition in an essential way, as suggested by Jie Shen [8]. In this way, the diagonal :
pentadiagonal patterns of the 1D stiffness and mass matrices are preserved and a lif
of the Neumann boundary datum is performed, leading to an algorithm with a structu
surprisingly similar to that for the solution of the Dirichlet problem, as will be shown in &
forthcoming work.

A. APPENDIX

This appendix contains the explicit derivation of the expressions for performing the liftin
of the Dirichlet data on the boundary of the 3D rectangular domain. Subsection A.1 rece
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the complete set of discrete boundary values used by the proposed direct solver. Tt
values are required by our algorithm to compute the Legendre coefficients associated v
the trace of the unknown by meanslof projection through Gauss—Legendre numerical
guadrature. Then, Subsections A.2 and A.3 deal with the derivation of the expressions
the components of the lifting associated with the edges and the faces, respectively.

A.1. The Set of Discrete Dirichlet Data

Letusfirstsummarize the set of boundary values needed by our spectral solution algori
for the Dirichlet problem in three dimensions. This set comprises three groups of data. Fil
there are the values at the eight corners of the cube,

aIbn aItn aIbf altf
( arbn artn arbf artf ) :
Then, there are the values at the (1D) Gauss—Legendre points of the twelve edges of

cube, which we regroup in three sets of four edges parallel to each coordinate axis, nan
for the x axis

A ={axg,—1,-1),1<g=<I|+1)
A% ={a(xq,+1,-1),1<g=<I|+1}
AP ={a(xg, +1,+1),1<g=<1+1)
A ={a(xg, —1,+1),1<g=<I|+1)

for they axis

A ={a(-1yy, -1, 1=9g=<J+1
A% ={a(+1 vy, -1D,1<g=<J+1}
A ={a(+1l yy, +1),1<g=<J+1)
A =A{a(-1yy. +1).1<g=<J+1},

and for thez axis

A% ={a(-1,-1,2z9),1<g<K+1}
A2 ={a(+1,-1,7z5),1<g<K+1}
A%2 ={a(+1 +1,25),1<g<K+1}
A% ={a(-1,+1,z5),1<g<K+1}.

Finally, there are the values at the (2D) Gauss—Legendre points of the six faces of the cl
namely

AFX ={a(-1,¥g,20),1<9<J+11<h<K+1}
APC ={a(+1,¥9,20),1 <9< J+11<h<K+1
AP ={a(xg, -1, z)),1<g<1+11<h<K+1}
AP ={a(xg, +1,z).1<g=<1+11<h<K+1
AFA = {a(Xg, Yh, —1),1<g <1 +11<h<J+1}
AF% = {a(Xg, Yh, +1),1<g <1 +1,1<h<J+1}.
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The total number of distinct Dirichlet values is therefor¢ 8(1 + J+ K +3) +2(1 +1)
G+D+20 +DK+D+20+DH(K+1)=2(1J + K + IK+ 41 +4J +4K+13).
This value can be compared with the number of discrete Dirichlet values which are us
instead in a collocation approach based(br- 1)(J + 1)(K + 1) Gauss—Lobatto points.

In this case the number of collocation points on the boundarglid 2 |K + JK +1). As

a consequence, the proposed Galerkin—Legendre method samples the@ag)rof the
Dirichlet boundary condition at@® + J + K + 3) more points than collocation schemes
using the same number of polynomials.

A.2. Derivation of the Edge Component of the Lifting

Let us consider the problem associated with the subcomponent of the lifting to accot
for the Dirichlet data prescribed along the four horizontal edges, once the possibly nc
homogeneous values at the vertices have been already taken into account by the cc
component of the liftingJ®. We introduce the test functions

Li*(x)L]-‘(y)Li(z), for2<i<l,j=0,1andk=0,1,

and the expansion

Li@ L

k=0,1

UaRIX, Y, 2) = ZL UG, i kL L

j=0,1
Ly {

k=0,1 J

+ > LU, jk Ly {

i=0,1 j=2

K
Lia ¢

k=2
+ S LU, oLty <

i=0,1 j=0,1
Here the symbo[{ is used for indicating summation in the third dimensrsimilarly
to the one adopted for the second dimensjorbut placed on the top of the summed

elements of the three-dimensional matrix. Consider now the uncoupled problem statec
Subsection 3.3.2 for the four horizontal edges,

4 4

edges__ ex corner:
S [ we= >t [ ufa - ugpe.
=1"8% =1"8%

and express it in a fully discrete form by takingx, y, z) = Li )L (YL (2) with
2<i’<l1,j'=0,1,andk’ =0, 1. By introducing the Z 2 matrix H with elements

Hij = LF(=DLI(-D + LF@DLiD),  fori =0,1andj =0,1,
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and using the elements of the one-dimensional mass matfrix—= f_ll L (x)L;(x) dx,

the weak equations become, foreverg 2 <1, j’=0,1andk’'=0, 1,
Hy ke Z
| k=0,1
> mii Ul ko H L
i=2 i=0,1

1 k(=D 1 L (=1)
:/ Ly (x) a®4(x) dx LT,(—1)+/ Ly (x) a®%(x) dx Lj.(1)
—1 -1

1 L (D 1 L (D
+ / L7 (x) a*¢(x) dx L} (D) +/ Ly (x) a®(x) dx Lj,(=1)
1 -1

Hy ke z

k=0,1

Y Mm@, j ko H

i=0,1 j=0,1

In the actual algorithm, the integrals on the right-hand side are evaluated approximately
means of Gauss—Legendre quadrature formula to give, for instance,

1 1+1
/ L5 (x)a®™ (x) dx = Z L (Xg) wg 8% (Xg),
1

g=1

wherexy andwg, 1<g<1+1, are the quadrature nodes and their respective weight
Accordingly, the previous weak equations assume the form

Hew <

k=0,1

|
> mii UG, j ko H L
i=2

j=0,1

+1 L (=D k(=D k(D)
= Li(xgwg|a™(xg) LT (=) + a™(xg) L}.(1) + a(xg) L}.(1)

=1
Hew <

;’(l) k=0,1
+a%0g) L (=D | = > miri UG j ko Hy ZL

i=0,1 j=0,1

The whole system can be recast in matrix form by introducing the vector of the Gaus
Legendre weights

w={wg,1<g=<1+1},

the arrayL of values of the Legendre functions computed at the Gauss—Legendre nod
indicated by script symbols, namely,

L={L@Q,1)=L{(Xy,1<g=<l1+10<ic<l},
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and using the four vectors™, 4%, 4%%, and4®%, defined in Appendix A.1. The full system
in matrix form reads as

H (Lo(=1) Li(=1)
MUPH = L7 ¢ wx A% (L§(=D) Li(-1)
(Lo(=D) Li(=1) (Ls(D LID)
+ A% (LoD LID)+ A% (LoD LI
(LoD Li(D) H
- A% (Li(=D) Li(=1)| p — MDD UPH,

wherex denotes the element-by-element multiplication of vectors and where we introduc
the following partitioning of the mass matrix,

M© MmbOT
M=1lmo nm )

using sans serif letters to denote vectors and matrices which pertain only to internal moc
that is, to basis functions vanishing at the extremes of the interval.

In particular, for our basis, the matrkt is diagonal and therefore the system of equations
can be written as four fully decoupled systems eactl 6f 1) unknowns. In fact, for the

Legendre basik*(x) one has
2 0
(o 2)

and the four uncoupled systems to perform the component of the lifting associated with 1
horizontal edges are

1
MUP(.,0,0) = 21cT[w * (AP 4 AP 4 42 4 a29] — MDY 0,0),

1
MU (-, 1,0) = —ch[w * (— A 4 8% 4 46— 2] - MPU©O(. 1, 0),

2.2

1
MUa(\h)(" 0,1 = Z—ﬂET[W* (—Aexl — B B +Ae><4)] _ M(h)Ua(f)(‘, 0,1,

1
MU (1, 1) = EcT[w * (A — %% 4 46— 2] — MPULO( 1, D).

Notice that, irrespective of such a decoupling, the edge component of the lifting cannot
evaluated on a edge-by-edge base.

A.3. Derivation of the Face Component of the Lifting

We consider the problem associated with the subcomponent of the lifting to account
the Dirichlet values on the faces whose normal is oriented ag-&xis, once their edges
have been already homogenized by the previous determination of all of the edge compon



SPECTRAL SOLUTION OF 3D HELMHOLTZ EQUATION 481

of the lifting U, UL, andU®. To express this problem in a discrete form we introduce
the test functions

L;*(x)L’j*(y)L’,;(z), for2<i<l,2<j<J andk=0,1,

and the expansion

Li {

k=0,1

URIX, Y, 2) = ZL UL G, j, koL (y)z

Li(2) Z
J

+ ) Lrooula, J k)L O

i=0,1 j=2

K
Li@ ¢
I k=2
+3 LU jkLiy L.
i=2 j=0,1
Consider now the uncoupled problem stated in Subsection 3.3.3 for the two faces nor
to thez axis,

faces FZL _ edges_ ucorner3
- - Uan anN ’

and express it in a fully discrete form by takingx, y, z) = LI OOLT (WLg (2 with
2<i'<l,2<j" < Jandk' =0, 1. Recalling the Z 2 matrix H introduced previously,
usmg the one-dimensional mass matrix elements = f Li (L (x)dx andnj j =
f L} (y)Lj(y) dy, and exploiting the fact that the term pertaining todhedges vanishes
smceL p(£1) =0, k> 2, the weak equations become, for eveg?2<1,2<j’'<J, and
k'=0,1,

Hew <

| k=0,1
> mi UL j kng g z
i—2
k’(_l) (D
=/ Li(x) a™#(x, y) L]—‘,<y>dxdy+/ Li(x) a"#(x, y) Lj.(y) dx dy
FZ; FZ,
Hi ke Z Hi ke Z
k=0,1 k=0,1
— Zml UG, kN Z Zm. UM, j, kn; Z
i=2 j=0,1 i=0,1
Hy ke Z

k=0,1

S meuld, i kongy L

i=0,1 j=01
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In the actual algorithm, the double integrals on the right-hand side are evaluated apprc
mately by means of Gauss—Legendre quadrature formula to give, for instance,

I+1 J+1

1 1
//Lﬁ(x)a”f(x)Ljﬂ(y)dxdy=ZLﬁ(xg;)wgaFXf(xg,yh)thj-ﬂ(ymz,
-1J-1 g=1 h=1

where, for =g <1 +1and 1<h < J + 1, Xy andy;, are the quadrature nodes angland
vp and their respective weights. Accordingly, the previous weak equations assume the fc

Hy ke Z

I k=0,1 J
Zmi’,i U d, j, kngj Z
i—2 =2
141 k(=D k(D 311
= Li(xgwgs a % (Xg, yn) + @ ?2(xg, yn) pon LT (yh) _{
g=1 h=1
Hick Z Hick Z
! k=0,1 k=01 3
= > mi UG kong g T =Y mi UG, g kong L
i=2 j=01 =01 =2
Hk,k/ Z
k=0,1
— Z mjj Uéc)(i, j, k) n,-,jfz .
i=0,1 j=0,1

The whole system can be recast in matrix form using the two matd€és and.AF%2 of
the values of the Dirichlet conditions at the Gauss—Legendre quadrature points belong
to the two considered faces, defined in Appendix A.1. The full system in matrix form rea

H (Lo(=1) Li(=D)) (LaD) LiD)
MUPN = TW AF# + AR 124

H H H
h h h
_ MU;)N(V) — M¢ )U;V)N— M ¢ )UéC) N(V),

with usual meaning for symbols and for matrix partitionings and where we have introduc
the two diagonal matrices of the Gauss—Legendre weights,

w1 U1
W= ) and V=
Wi +1 Vi+1

Since the matriH is diagonal the system of equations can be written as two fully decouple
two-dimensional consistent matrix problems eaclilof 1) x (J — 1) unknowns. Using
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the elements oH and rearranging, one obtains two uncoupled systems to perform tt
component of the lifting associated with two faces orthogonal ta tfiesction,

1
MUP (., -, O)N = EETW(Ale + APV T — MU (-, -, N

—~MPUM(, . ON-MPUO, ., 0NV,
1
V2
_ M(h)Uév)(-, SN - M(h)U;C)('s S DNW,

MUL (-, DN = —=LTW(=AFA + APV T — MU (-, -, DNV

It is important to remark that, again, irrespective of such a decoupling, the face compon

of

=

10.

11.

12.

13
14

the lifting cannot be evaluated on a face-by-face base.
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