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A Galerkin–Legendre spectral method for the direct solution of Poisson and
Helmholtz equations in a three-dimensional rectangular domain is presented. The
method extends Jie Shen’s algorithm for 2D problems by using the diagonalization
of the three mass matrices in the three spatial directions and fully exploits the di-
rect product nature of the spectral approximation. The Dirichlet boundary values are
taken into account by means of a discrete lifting performed in three subsequent steps
and built upon Gauss–Legendre quadrature points. A few numerical tests illustrate
the accuracy and efficiency of the method.c© 2000 Academic Press
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1. INTRODUCTION

The first implementations of spectral methods using orthogonal polynomials in non-
periodic domains were based on Tau–Chebyshev technique [1–3]. For instance, for the
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Poisson and Helmholtz equations of interest here, the early method of solution proposed
by Haidvogel and Zang [4] was based on a Tau–Chebyshev approximation. Such a method
consists of a direct algorithm for 2D elliptic equations in a rectangular region exploiting
the variable separation by means of a diagonalization in one direction; see also [2, p. 133].
This algorithm, together with some iterative versions of it, was subsequently generalized
by Haldenwang,et al. [5] to solve three-dimensional elliptic problems under general non-
homogenous boundary conditions.

In the last ten years, spectral methods have witnessed a growing interest in collocation
methods relying upon Lagrangian bases as well as in variational formulations of Galerkin
type using Legendre polynomials [6]; see also [7]. In particular, in the context of the Galerkin
method, Jie Shen [8] introduced a new basis of Legendre polynomials to solve Helmholtz and
biharmonic problems in two dimensions by diagonalization. Shen’s basis has the interesting
property of being orthogonal in the energy norm (i.e., theL2 norm of the first derivative
of the variable), so that the diagonalization has to be performed on the mass matrix which
has a very simple pentadiagonal profile. In Shen’s algorithm, the spectral decomposition is
performed only in one spatial direction, and the algorithm has been extended also to deal
with a spectral representation based on Chebyshev polynomials [9]. As a matter of fact,
the mass diagonalization for the Legendre approximation can be applied in both spatial
directions. This has been shown by the present authors in [10], where the idea of a fully
discrete lifting for enforcing nonhomogeneous Dirichlet boundary conditions for the 2D
Helmholtz equation has also been introduced. In fact, in a variational setting the lifting
of the Dirichlet data represents, in general, the most appropriate way of accounting for
this kind of boundary conditions, cf. Strang and Fix [11], and provides, in particular, the
simplest way of accommodating numerically the compatibility conditions existing among
the Dirichlet data of the continuum problem, as shown by Bernardi and Maday [6]. For
instance, the lifting proposed in [10] for the Galerkin–Legendre spectral approximation
of the 2D elliptic equation pivots on the compatibility conditions at the four corners by a
two-step process to account for the boundary values prescribed first at the corners and then
on the four sides of the rectangular domain.

The aim of this paper is to describe a direct spectral solver for the 3D Helmholtz equation
in a rectangular box based on the Galerkin–Legendre spectral approximation. The proposed
algorithm relies upon the diagonalization of the three mass matrices in the three spatial
directions and uses a lifting of the Dirichlet boundary values which extends the one adopted
in two dimensions. Quite obviously, the lifting for the 3D problem will be performed in
three steps to account for the corners values, the edge values, and the face values of the
Dirichlet condition, the result of each step being required for executing the next one.

As it will be shown in the following, the most complex component of the proposed
method is in fact this three-step lifting. The point is that such a lifting is necessary to
transform the direct (Cartesian) product structure of the problem in the physical space
into the direct product in the space of the Legendre coefficients. In this manner one can
build a spectral method for 3D problems relying upon the solution of only one-dimensional
subproblems which thus implement the idea of variable separation in the transformed space
of Legendre coefficients. The development of the algorithm has required us to introduce a
notation suitable for representing all the operations of matrix multiplication which must be
performed on the three-dimensional array of the Legendre coefficients of the unknown. The
notation proposed in the paper may appear somewhat complex but we have been unable to
find an alternative one which could be more convenient for the analysis and the computer
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implementation of the new solution method. Such a complexity is not met, of course, when
local discretizations, such as those offered by finite differences or elements, are adopted,
in which case the standard tensor product notation is sufficient to derive direct solution
algorithms for rectangular domains; see, e.g., the classical work by Lynchet al. [12].

Anyhow, despite its notational complexity, the proposed three-step lifting for the spectral
Galerkin method represents a small fraction of the total computational effort needed to solve
a given 3D problem. In fact, as it will be shown by the numerical tests, the solution cost is
associated mainly with evaluating the perturbation of the right hand side by the lifting and
the similarity transformations that exploit the eigenvector decompositions, letting aside the
cost of the initialization phase to obtain the point values of the basis functions for theL2

projection of the data and to solve the eigenproblems. In this respect, it must be stressed that
the perturbation of the right hand side is a step needed in Galerkin as well as in collocation
methods based on Gauss–Lobatto grid points. Therefore, the cost of such a perturbation
constitutes a bound for any method, either spectral Galerkin or pseudospectral collocation,
based on eigenstructure decomposition.

The present paper is organized as follows. In Section 2 we recall the Legendre basis pro-
posed by Shen [8] for approximating differential equations in one dimension, augmented
in order to allow a discrete lifting of the prescribed boundary values [10]. Section 3 de-
scribes the spectral approximation of the 3D Helmholtz equation supplemented by nonho-
mogeneous Dirichlet conditions, by means of the Galerkin–Legendre formulation. First, in
Subsection 3.1 we define the differential boundary value problem and the spectral expansion
of its solution, by introducing a special notation particularly convenient for the representa-
tion of the algorithm which fully exploits the variable separation in three dimensions. Then,
Subsection 3.2 addresses the issue of compatibility conditions on the Dirichlet boundary
values prescribed on the six faces of the 3D rectangular domain. The compatibility condi-
tions allow us to perform the lifting of the nonhomogeneous Dirichlet data in a three-step
process described in Subsection 3.3. These steps account for the boundary values specified
at the vertices, along the edges and on the faces, in succession, in full compliance with
variable separation. The derivation of the basic formulas for the edge and face components
of the lifting is relegated in the Appendix, where the set of all of the discrete Dirichlet
data used by our lifting is also displayed. The three-step lifting is then used to perturb
the right hand side of the system of discrete equations (Subsection 3.4). The homogenized
Dirichlet boundary value problem so obtained is finally solved by a triple diagonalization
algorithm relying on the eigenstructure of the three 1D mass matrices associated with the
Legendre approximation in each spatial direction, as described in Subsection 3.5. A few
numerical tests assessing the spectral accuracy of the proposed direct method are presented
in Section 4. The last section is devoted to the concluding remarks.

2. GALERKIN–LEGENDRE APPROXIMATION

In this section, the Galerkin–Legendre approximation of a second order linear ODE
−u′′ + γu= s(x), with γ a nonnegative constant, is considered. The explicit form of the
stiffness and mass matrix is given, following the derivation of Shen [8] and including the
treatment of nonhomogeneous boundary conditions at the interval extremes.

Let us consider the basis for representing functions ofx defined on the interval [−1, 1],

{L∗n(x), 0≤ n ≤ N} ≡ {1, x/
√

2, kn−1(1− x2)L ′n−1(x), 2≤ n ≤ N},
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wherekn≡ (
√

n+ 1/2)/(n+ n2) andLn(x), n= 0, 1, 2, . . . , are the Legendre polynomi-
als. ThusL∗n(x) is a polynomial of degreen for anyn≥ 0 and, forn≥ 2, one has Shen’s
basis [8]

L∗n(x) =
Ln−2(x)− Ln(x)√

2(2n− 1)
, n ≥ 2.

The normalization ofL∗n(x) for n> 0 has been chosen to make the stiffness matrix coincident
with the unit matrix of proper dimension, but for the constant mode. In fact, once the stiffness
matrix D is defined by

dn,k ≡
∫ 1

−1
L∗n(x)

′ L∗k(x)
′ dx, n, k ≥ 0,

it is immediate to see that

dn,k = δn,k, n, k ≥ 1,

dn,0 = d0,n = 0, n ≥ 0,

δn,k being the Kronecker symbol, as a consequence of the Sturm–Liouville equation for
Jacobi polynomials and of the normalization

∫ 1

−1
Ln(x)Lk(x) dx = 2

2n+ 1
δn,k, n, k ≥ 0.

For further reference, the(N+ 1)× (N+ 1) stiffness matrix is denoted by
0
D to remind

that its leading elementD0,0 is zero; namely, we write

0
D =



0 1 2 · · · N

0 0
1 1
2 1
...

. . .

N 1

.

Similarly, the(N+ 1)× (N+ 1) mass matrixM is defined by

mn,k ≡
∫ 1

−1
L∗n(x)L

∗
k(x) dx, n, k ≥ 0.

By elementary properties of Jacobi polynomials or as demonstrated in [8], the only non-
zero elements ofM are located along the diagonal and two codiagonals, according to the
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pentadiagonal profile,

M =



0 1 2 3 4 · · · N−2 N−1 N

0 c0 0 a0

1 0 c1 0 a1

2 a0 0 c2 0 a2

3 a1 0 c3 0
. . .

4 a2 0 c4 0
. . .

...
. . . 0

. . . 0 aN−3

N−2
. . . 0 cN−2 0 aN−2

N−1 aN−3 0 cN−1 0

N aN−2 0 cN


.

A direct calculation gives

a0 =
√

2

3
, a1 = 1

3
√

5
, an = −1

(2n+ 1)
√
(2n− 1)(2n+ 3)

, n ≥ 2,

c0 = 2, c1 = 1

3
, cn = 2

(2n− 3)(2n+ 1)
, n ≥ 2.

3. THE 3D HELMHOLTZ EQUATION

3.1. Spectral Approximation of the Helmholtz Equation

Let us consider the Dirichlet problem for the Helmholtz operator with unknownu=
u(x, y, z) in the cubic regionÄ≡ (−1, 1)3,

(−∇2+ γ )u = s(x, y, z), u|∂Ä = a(r∂Ä),

whereγ is a nonnegative constant,s(x, y, z) is a known source term defined inÄ, and
a(r∂Ä) is the Dirichlet boundary datum specified on∂Ä.

The spatial discretization of the Helmholtz equation is done by means of the Galerkin
projection method employing the Legendre basisL∗n(x), n≥ 0, defined in Section 2. The
approximate solutionuN is expanded in the triple series

K ∑

k=0

L∗k(z)

uN(x, y, z) =
I∑

i=0

L∗i (x) ui, j,k L∗j (y)
J ∑

j=0

.

Symbol
∑
is used to indicate a summation acting on the expression on the left, instead

of on the right, as the usual
∑

. The special symbol
∑
was introduced in [10] to be fully

adherent with the matrix notation used in [2] for two-dimensional elliptic equations. The
present problem being three-dimensional, we introduce also the new symbol

∑

to deal with
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the summation along the “third” dimension. Indicating the three summations in the three
spatial directions according to this special notation turns out to be particularly convenient
in the derivation of the algorithms to be presented below.

3.2. Compatibility of the Dirichlet Data

The distribution of the Dirichlet boundary values is specified on the six faces of the
rectangular domainÄ. This means that the following six functions, each of two variables,
are known for any|x| ≤1, |y| ≤1, and|z| ≤1,

aF X1(y, z) = a(−1, y, z), aF X2(y, z) = a(1, y, z),

aFY1(x, z) = a(x,−1, z), aFY2(x, z) = a(x, 1, z),

aF Z1(x, y) = a(x, y,−1), aF Z2(x, y) = a(x, y, 1).

These functions arenot independent since they must satisfy compatibility conditions. In
fact, as shown by Grisvard [13, Theorem 1.5.1.7], in order for the functiona(r∂Ä) of the
Dirichlet datum to be the trace of a function belonging to the Sobolev spaceH1((−1, 1)3),
it must satisfy a set of compatibility conditions of an integral character. Such conditions
reduce themselves to pointwise continuity along the twelve edges of the cube and at the
eight vertices, if the datuma can be assumed to be piecewise continuous and bounded, as
it is most often in practice.

Let us examine first the set of compatibility conditions along the edges parallel to the
x axis and consider in particular the edge|x| ≤1, y=−1, andz=−1. The continuity
along this edge means that we have the following constraint between the two functions
aFY1(x, z)=a(x,−1, z) andaF Z1(x, y)=a(x, y,−1), defined above,

aFY1(x,−1) = aF Z1(x,−1).

This allows us to introduce the one-variable functionaex1(x)=a(x,−1,−1) representing
the distribution of the Dirichlet value along the considered edge, which is the intersection
of the two faces. The application of the same argument to all the other edges leads us to
define the following twelve functions of only one variable,

aex1(x) = a(x,−1,−1), aey1(y) = a(−1, y,−1), aez1(z) = a(−1,−1, z),

aex2(x) = a(x,+1,−1), aey2(y) = a(+1, y,−1), aez2(z) = a(+1,−1, z),

aex3(x) = a(x,+1,+1), aey3(y) = a(+1, y,+1), aez3(z) = a(+1,+1, z),

aex4(x) = a(x,−1,+1), aey4(y) = a(−1, y,+1), aez4(z) = a(−1,+1, z),

which represent the distribution of the Dirichlet boundary value along the edges of the
prism.

The continuity of the Dirichlet data at the eight vertices (called also “corners”) of the
prism implies that the functions of a single variable just introduced must satisfy compatibility
conditions at these eight points. We are therefore led to identify the (unique) value prescribed
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at each corner of the prism by defining the corner values


albn = a(−1,−1,−1), altn = a(−1, 1,−1),

arbn = a(1,−1,−1), artn = a(1, 1,−1),

albf = a(−1,−1, 1), altf = a(−1, 1, 1),

arbf = a(1,−1, 1), artf = a(1, 1, 1),

where superscripts l and r denote left and right, b and t denote bottom and top, and n and f
denote near and far position of the considered corner.

3.3. Three-Step Lifting of the Dirichlet Data

In the following we introduce a lifting of the nonhomogeneous Dirichlet condition which
accounts in succession for the boundary values specified at the vertices, along the edges
and on the faces of the boundary of the rectangular regionÄ. As it will become evident
later, it is precisely the cascadic account of the Dirichlet boundary data belonging to these
three different sets that allows us to develop an algorithm implementing the separation of
variables in the space of the Legendre coefficients, and exploiting the direct product nature
of the considered spectral approximation.

The lifting of the Dirichlet boundary datuma(r∂Ä) consists of expressing the solution
uN(x, y, z) in two parts, as

uN(x, y, z) = u0,N(x, y, z)+ ua,N(x, y, z),

whereu0,N(x, y, z) satisfies a homogeneous Dirichlet condition, whileua,N(x, y, z) is an
arbitrary function whose trace on∂Ä approximatesa(r∂Ä).

To determine the liftingua,N(x, y, z)we choose to split it in three separate contributions,

ua,N(x, y, z) = ucorners
a,N (x, y, z)+ uedges

a,N (x, y, z)+ ufaces
a,N (x, y, z),

whereucorners
a,N (x, y, z) is the component to account for nonzero Dirichlet values at the

corners, uedges
a,N (x, y, z) is the component to relief nonzero Dirichlet values on theedges,

andufaces
a,N (x, y, z) is the component to relief nonzero Dirichlet values on thefaces.

The first componentucorners
a,N (x, y, z) is determined by a collocative approach, which

enables one to satisfy the Dirichlet boundary condition in a strong sense exclusively at
the corners. This is indeed a useful property, especially if the method is used as a starting
point for applications to more complex domains via a domain decomposition approach.
The second and the third components of the lifting are instead evaluated by the Galerkin–
Legendre approach using theL2 projection of the boundary data. The use ofL2 projections in
the proposed way of enforcing the Dirichlet condition can lead to a suboptimal convergence
rate of the approximation with respect to the strongerH1/2 projection, as pointed out by a
reviewer. This lack of optimality is however expected to be barely felt in applications and
is anyway compensated by the simplicity of theL2 projection in the implementation.

The complete lifting including the three components is finally used to perturb the right
hand side of the discrete Helmholtz equation to obtain the final system of algebraic
equations.
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FIG. 1. Partitioning of the array of the expansion coefficients for the 3D Helmholtz problem in a rectangular
domain.

It is convenient to introduce the following partitioning of the three-dimensional array1

of the Legendre coefficients,

U =


U(c) U(v)

U(h) U(D) ,

U(d) U(H)

U(V) U

 ,
whereU(c) is the 2× 2× 2 array associated with the basis elements which are nonzero
on the corners; moreover,U(h), U(v), andU(d) are(I − 1)× 2× 2, 2× (J − 1)× 2, and
2× 2× (K − 1) arrays associated with basis functions which are nonzero respectively on
the horizontal, vertical, and in-depth edges of the cube, but for the extremes; then,U(H),
U(V), andU(D) are 2× (J−1)× (K −1), (I −1)× 2× (K −1), and(I −1)× (J−1)× 2
arrays associated with basis functions which are nonzero on the square faces of the cubes,
normal to the axisx, y, andz, respectively, but vanishing on the sides of each face. Finally,
U is the(I − 1)× (J − 1)× (K − 1) array which contains the coefficients pertaining only
to the “internal modes,” that is, modes vanishing on the boundary. The partitioning is shown
in Fig. 1. The meaning of the superscripts (h), (v), and (d) is with reference to a system of

1 In the following, boldface capital letters will always indicate three-dimensional arrays, namely, arrays with
three indices, each with a range extent>1. On the contrary, two-dimensional arrays (i.e., ordinary matrices) will
be denoted by light (nonbold) capital letters.
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Cartesian coordinates with thex axis placed horizontally, they axis vertically, and thez
axis along the depth direction. The naming of the partitioning should not be confused with
the actual placement of the rectangular subarraysU(h) andU(v) in the complete arrayU,
where the first index corresponds tox and the second index toy according to the standard
usage.

By virtue of this partitioning, the array representation of the Legendre coefficients of the
lifting ua,N(x, y, z) will be

Ua =


U(c)

a U(v)
a

U(h)
a U(D)

a
,

U(d)
a U(H)

a

U(V)
a 0

,
where0 denotes the zero array of size(I − 1)× (J − 1)× (K − 1).

3.3.1. Corner (vertex) component of the lifting.As anticipated, the corner component
ucorners

a,N (x, y, z) of the lifting (see the left drawing in Fig. 2) is determined by a collocative
approach, i.e., we write

ucorners
a,N (−1,−1,−1) = albn, ucorners

a,N (−1, 1,−1) = altn,

ucorners
a,N (1,−1,−1) = arbn, ucorners

a,N (1, 1,−1) = artn,

ucorners
a,N (−1,−1, 1) = albf, ucorners

a,N (−1, 1, 1) = altf ,

ucorners
a,N (1,−1, 1) = arbf, ucorners

a,N (1, 1, 1) = artf .

It is natural to seek this part of the lifting in the subspace spanned by the basis functions of
(x, y, z) which are nonzero on the corners, namely,

L∗0(x)L
∗
0(y)L

∗
0(z) L∗0(x)L

∗
1(y)L

∗
0(z)

L∗1(x)L
∗
0(y)L

∗
0(z) L∗1(x)L

∗
1(y)L

∗
0(z)

L∗0(x)L
∗
0(y)L

∗
1(z) L∗0(x)L

∗
1(y)L

∗
1(z)

L∗1(x)L
∗
0(y)L

∗
1(z) L∗1(x)L

∗
1(y)L

∗
1(z).

FIG. 2. Schematic representation of the three-step process to lift the Dirichlet condition of a 3D Helmholtz
problem in a rectangular domain. Left, corner component; middle, edge component; right, face component.
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Accordingly, we have (
L∗0(z)

L∗1(z)

)

ucorners
a,N (x, y, z) = (L∗0(x) L∗1(x)) U(c)

a

(
L∗0(y)

L∗1(y)

)
.

We use the notation of placing the matrices associated with the third dimension (z) on the
top of the (3D) array to indicate the multiplication “along its third dimension,” namely the
dimension of the thickness or depth of the array.

Therefore the system of eight equations can be written compactly as(
L∗0(−1) L∗0(1)

L∗1(−1) L∗1(1)

)
(

L∗0(−1) L∗1(−1)

L∗0(1) L∗1(1)

)
U(c)

a

(
L∗0(−1) L∗0(1)

L∗1(−1) L∗1(1)

)

=
(

albn altn albf altf

arbn artn arbf artf

)

and is nonsingular. A simple calculation gives

U (c)
a (0, 0, 0) = 1

8
(albn+ altn + arbn+ artn+ albf + altf + arbf + artf),

U (c)
a (1, 0, 0) = 1

4
√

2
(−albn− altn + arbn+ artn− albf − altf + arbf + artf),

U (c)
a (0, 1, 0) = 1

4
√

2
(−albn+ altn − arbn+ artn− albf + altf − arbf + artf),

U (c)
a (1, 1, 0) = 1

4
(albn− altn − arbn+ artn+ albf − altf − arbf + artf),

U (c)
a (0, 0, 1) = 1

4
√

2
(−albn− altn − arbn− artn+ albf + altf + arbf + artf),

U (c)
a (1, 0, 1) = 1

4
(albn+ altn − arbn− artn− albf − altf + arbf + artf),

U (c)
a (0, 1, 1) = 1

4
(albn− altn + arbn− artn− albf + altf − arbf + artf),

U (c)
a (1, 1, 1) = 1

2
√

2
(−albn+ altn + arbn− artn+ albf − altf − arbf + artf).

3.3.2. Edge component of the lifting.OnceU(c)
a has been determined, the second step

of the lifting consists in evaluating its edge componentuedges
a,N (x, y, z), namely, to compute

U(h)
a , U(v)

a , andU(d)
a by means of the (1D) Galerkin–Legendre approach (see the middle

drawing in Fig. 2). The functionuedges
a,N (x, y, z) will be sought in the subspace spanned

by basis functions ofH1(Ä) that are zero on the corners and nonzero on the edges, and
whose trace on the edges is the orthogonal projection, in the sense of theL2(−1, 1) inner-
product, of the trace of the boundary datum once the corner nonhomogeneous part has been
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subtracted. In other terms, we have to determineuedges
a,N (x, y, z) such that

∑
edges

∫ 1

−1
vuedges

a,N =
∑
edges

∫ 1

−1
v
(
a− ucorners

a,N

)
,

where v(x, y, z) represents any function belonging to the same subspace in which
uedges

a,N (x, y, z) is sought for.
Writing the boundary integral as the sum of the contributions due to the twelve edges,

the orthogonal projection can be written as

4∑
`=1

{∫
ex̀
vuh-edges

a,N +
∫

eỳ
vuv-edges

a,N +
∫

ez̀
vud-edges

a,N

}

=
4∑
`=1

{∫
ex̀
v
(
aex̀ − ucorners

a,N

)+ ∫
eỳ
v
(
aeỳ − ucorners

a,N

)+ ∫
ez̀
v
(
aez̀ − ucorners

a,N

)}
,

where theex̀ , `= 1, . . . ,4, denote the set of four edges parallel to thex axis and where we
used the notationuh-edges

a,N = uedges
a,N |∪4

`= 1ex̀ = uedges
a,N |(x,±1,±1), and similarly in the other two

directions.
By virtue of the vanishing of anyv at the corners, the contributions due to the horizontal,

vertical, and depth direction edges can be uncoupled from each other by choosing test
functions which vanish on one set of four parallel edges at a time and by expanding the
lifting in the same basis. Eventually, the whole problem separates in three independent
subproblems, each of them being associated with four parallel edges,

4∑
`=1

∫
ex̀
vuh-edges

a,N =
4∑
`=1

∫
ex̀
v
(
aex̀ − ucorners

a,N

)
,

4∑
`=1

∫
eỳ
vuv-edges

a,N =
4∑
`=1

∫
eỳ
v
(
aeỳ − ucorners

a,N

)
,

4∑
`=1

∫
ez̀
vud-edges

a,N =
4∑
`=1

∫
ez̀
v
(
aez̀ − ucorners

a,N

)
.

Let us express each of the three problems in a discrete form and consider first the problem
associated with the horizontal edges, which is written more precisely

4∑
`=1

∫
ex̀
vuedges

a,N =
4∑
`=1

∫
ex̀
v
(
aex̀ − ucorners

a,N

)
,

with the edge-trace of the functions being understood in the integrals, namely,v= v |ex̀ ,
uedges

a,N = uedges
a,N |ex̀ anducorners

a,N = ucorners
a,N |ex̀ . A detailed derivation of the solution of the prob-

lem associated with the four horizontal edges is given in Appendix A.2. The expression of the
final solution can be recast in matrix form by introducing the vector of the Gauss–Legendre
weights

W ≡ {wg, 1≤ g ≤ I + 1},
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and the arrayL of values of the Legendre functions computed at the Gauss–Legendre
nodes,2 namely,

L ≡ {L(g, i ) = L∗i (xg), 1≤ g ≤ I + 1, 0≤ i ≤ I }.

Moreover, it is necessary to introduce the four vectors of the values of the Dirichlet conditions
on the four horizontal edges,aex1(x), aex2(x), aex3(x), andaex4(x), evaluated at the same
quadrature points,

Aex1 = {aex1(xg) = a(xg,−1,−1), 1≤ g ≤ I + 1}
Aex2 = {aex2(xg) = a(xg,+1,−1), 1≤ g ≤ I + 1}
Aex3 = {aex3(xg) = a(xg,+1,+1), 1≤ g ≤ I + 1}
Aex4 = {aex4(xg) = a(xg,−1,+1), 1≤ g ≤ I + 1}.

Finally, we have to introduce the partitioning of the mass matrix,3

M =
(

M (c) M (h)T

M (h) M

)
.

In terms of all these quantities, the subcomponent of the lifting associated with the horizontal
edges is achieved by solving the following four uncoupled systems of equations,

MU (h)
a (·, 0, 0) = 1

4
LT [W ? (Aex1 + Aex2 + Aex3 + Aex4)] − M (h)U (c)

a (·, 0, 0),

MU (h)
a (·, 1, 0) = 1

2
√

2
LT [W ? (−Aex1 + Aex2 + Aex3 − Aex4)] − M (h)U (c)

a (·, 1, 0),

MU (h)
a (·, 0, 1) = 1

2
√

2
LT [W ? (−Aex1 − Aex2 + Aex3 + Aex4)] − M (h)U (c)

a (·, 0, 1),

MU (h)
a (·, 1, 1) = 1

2
LT [W ? (Aex1 − Aex2 + Aex3 − Aex4)] − M (h)U (c)

a (·, 1, 1),

where the symbol? denotes the element-by-element multiplication of vectors. It is inter-
esting to remark that, irrespective of the decoupling in four mass matrix problems, for the
adopted basis the edge component of the lifting associated with the four horizontal edges
cannot be evaluated dealing with the Dirichlet values on each edge independently from the
other three edges.

The same procedure can be adopted for the four vertical edges and for the four edges
in the depth direction. The result is similar to the former expression by virtue of the direct
product nature of the basis provided we introduce a partitioning for the mass matricesN
andQ in the y andz direction, as

N =
(

N(c) N(v)

N(v)T N

)
and Q =

(
Q(c) Q(d)

Q(d)T Q

)
,

2 Here and in the following, script letters are used to indicate quantities evaluated at, or associated with, Gauss–
Legendre quadrature points.

3 Sans serif letters are used throughout to denote vectors, matrices, and arrays which pertain only to internal
modes, that is, to basis functions vanishing at the extremes of the interval.
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and define the vectorV≡{wg, 1≤ g≤ J+ 1} containing the weights of the Gauss–
Legendre quadrature formula withJ+ 1 nodes and the matrixJ ≡{L(g, j )= L∗j (xg),
1≤ g≤ J+ 1, 0≤ j ≤ J}, with similar definitions forU andK for the expansion in thez
variable. Moreover, we need to introduce the vectorsAeỳ andAez̀ , ` = 1, 2, 3, 4, according
to the definitions given in Appendix A.1. The solution for the four vertical edges reads

U (v)
a (0, ·, 0)N = 1

4
[(Aey1 + Aey2 + Aey3 + Aey4) ? V]TJ −U (c)

a (0, ·, 0)N(v),

U (v)
a (1, ·, 0)N = 1

2
√

2
[(−Aey1 + Aey2 + Aey3 − Aey4) ? V]TJ −U (c)

a (1, ·, 0)N(v),

U (v)
a (0, ·, 1)N = 1

2
√

2
[(−Aey1 − Aey2 + Aey3 + Aey4) ? V]TJ −U (c)

a (0, ·, 1)N(v),

U (v)
a (1, ·, 1)N = 1

2
[(Aey1 − Aey2 + Aey3 − Aey4) ? V]TJ −U (c)

a (1, ·, 1)N(v);

while that for the four edges in the depth direction is

Q
U (d)

a (0, 0, ·)= 1

4
[(Aez1 + Aez2 + Aez3 + Aez4) ? U]TK−

Q(d)

U (c)
a (0, 0, ·),

Q
U (d)

a (1, 0, ·)= 1

2
√

2
[(−Aez1 + Aez2 + Aez3 − Aez4) ? U]TK−

Q(d)

U (c)
a (1, 0, ·),

Q
U (d)

a (0, 1, ·)= 1

2
√

2
[(−Aez1 − Aez2 + Aez3 + Aez4) ? U]TK−

Q(d)

U (c)
a (0, 1, ·),

Q
U (d)

a (1, 1, ·)= 1

2
[(Aez1 − Aez2 + Aez3 − Aez4) ? U]TK−

Q(d)

U (c)
a (1, 1, ·) .

In conclusion, the edge component of the lifting requires us to solve 4+ 4+ 4 mass matrix
problems of size(I − 1), (J − 1), and(K − 1), respectively. It is important to note that
the lifting for the edge boundary values depends on the previously computed result of the
corner component. In other words, the corner component of the lifting acts itself as a lifting
for performing the edge component of the lifting.

3.3.3. Face component of the lifting.OnceU(c)
a , U(h)

a , U(v)
a , andU(d)

a have been deter-
mined, the third step of the lifting consists in evaluating its face componentufaces

a,N (x, y, z),
namely, to computeU(H)

a , U(V)
a , andU(D)

a by means of the (2D) Galerkin–Legendre approach
(see the right drawing in Fig. 2). The functionufaces

a,N (x, y, z) will be sought in the subspace
spanned by basis functions ofH1(Ä) that are zero on the corners and on the edges while
nonzero on the faces, and whose trace on the faces is the orthogonal projection, in the sense
of the L2((−1, 1)2) inner product, of the trace of the boundary datum once the corner and
edge nonhomogeneous parts have been subtracted. In other terms, we have to determine
ufaces

a,N (x, y, z) such that∫
∂Ä

vufaces
a,N =

∫
∂Ä

v
(
a− uedges

a,N − ucorners
a,N

)
,

where v(x, y, z) represents any function belonging to the same subspace in which
ufaces

a,N (x, y, z) is sought.
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Writing the boundary integral as the sum of the contributions due to the six faces, the
orthogonal projection can be written as

2∑
`=1

{∫
F X`

vuH-faces
a,N +

∫
FỲ
vuV-faces

a,N +
∫

F Z`

vuD-faces
a,N

}

=
2∑
`=1

{∫
F X`

v
(
aF X` − uedges

a,N − ucorners
a,N

)
+
∫

FỲ
v
(
aFỲ − uedges

a,N − ucorners
a,N

)+ ∫
F Z`

v
(
aF Z` − uedges

a,N − ucorners
a,N

)}
,

whereF X`, `= 1, 2, denote the pair of square faces normal to thex axis and where we
introduced the notationuH-faces

a,N = ufaces
a,N |F X1∪F X2 = ufaces

a,N |(±1,y,z), and similarly for the other
two pairs of faces.

By virtue of the vanishing of anyv at the corners and on the edges, the contributions due
to the horizontal, vertical, and depth direction edges can be uncoupled from each other by
choosing test functions which vanish on two sets of parallel faces, among the total of three,
at a time and by expanding the lifting in the same basis. Eventually, the whole problem
separates into three independent ones, each of them being associated with two parallel faces,

2∑
`=1

∫
F X`

vuH-faces
a,N =

2∑
`=1

∫
F X`

v
(
aF X` − uedges

a,N − ucorners
a,N

)
,

2∑
`=1

∫
FỲ
vuV-faces

a,N =
2∑
`=1

∫
FỲ
v
(
aFỲ − uedges

a,N − ucorners
a,N

)
,

2∑
`=1

∫
F Z`

vuD-faces
a,N =

2∑
`=1

∫
F Z`

v
(
aF Z` − uedges

a,N − ucorners
a,N

)
.

Let us consider the problem associated with the faces whose normal is oriented as the
z-axis first, which is written more precisely as

2∑
`=1

∫
F Z`

vufaces
a,N =

2∑
`=1

∫
F Z`

v
(
aF Z` − uedges

a,N − ucorners
a,N

)
,

with the trace of functions being understood in the integrals, namely,v= v|F Z` , ufaces
a,N =

ufaces
a,N |F Z` , uedges

a,N = uedges
a,N |F Z` and ucorners

a,N = ucorners
a,N |F Z` . As shown in Appendix A.3, by

introducing the two diagonal matrices of the Gauss–Legendre weights,

W =


w1

w2

. . .

wI+1

 and V =


v1

v2

. . .

vJ+1

,

and the two matrices of the values of the specified functionsaF Z1(x, y) andaF Z2(x, y) at
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the Gauss–Legendre quadrature points on the two considered faces,

{
AF Z1 = {aF Z1(xg, yh) = a(xg, yh,−1), 1≤ g ≤ I + 1, 1≤ h ≤ J + 1},
AF Z2 = {aF Z2(xg, yh) = a(xg, yh, 1), 1≤ g ≤ I + 1, 1≤ h ≤ J + 1},

one obtains two uncoupled systems to perform the lifting on the faces orthogonal to thez
direction,

MU (D)
a (·, ·, 0)N = 1

2
LTW(AF Z1 +AF Z2)VJ −MU (h)

a (·, ·, 0)N(v)

−M (h)U (v)
a (·, ·, 0)N− M (h)U (c)

a (·, ·, 0)N(v),

MU (D)
a (·, ·, 1)N = 1√

2
LTW

(−AF Z1 +AF Z2
)
VJ −MU (h)

a (·, ·, 1)N(v)

−M (h)U (v)
a (·, ·, 1)N− M (h)U (c)

a (·, ·, 1)N(v).

It must be noticed that the determination of the face component of the lifting is possible
only after the other two components, associated with the edges normal to the considered
faces and with the corners, have already been determined. In fact the expressions above
show that the previously computedU(v)

a andU(d)
a as well asU(c)

a enter the right-hand side
of the equations giving the face component of the lifting as a known perturbation: stated in
other terms, the arrays of the first two steps of the complete lifting act themselves as a lifting
for evaluating the third component of the lifting associated with the faces. It is precisely the
very peculiar nested structure of a lifting within the lifting that made the lifting for the three-
dimensional equation elusive so far. Finally, one can also remark that, again, irrespective of
the decoupling of the two problems for Legendre coefficients associated with the considered
two faces, each problem involves the Dirichlet data prescribed on both faces: in other words,
the face component of the lifting cannot be evaluated on a face-by-face base.

The same procedure can be adopted for the other two face pairs. The result is similar to
the former expression by virtue of the direct product nature of the basis provided we recall
the partitioning for the mass matricesN andQ in the y andz direction and introduce the
matricesAF X` andAFỲ , `= 1, 2, of the Dirichlet values at the Gauss–Legendre points
belonging to the other two face pairs, as defined in Appendix A.1. The solution for the two
faces orthogonal to they direction reads

M
Q

U (V)
a (·, 0, ·) = 1

2
LTW

(
AFY1 +AFY2

)
UK −M

Q(d)

U (h)
a (·, 0, ·)

−M (h)
Q

U (d)
a (·, 0, ·)−M (h)

Q(d)

U (c)
a (·, 0, ·),

M
Q

U (V)
a (·, 1, ·)= 1√

2
LTW

(−AFY1 +AFY2
)
UK −M

Q(d)

U (h)
a (·, 1, ·)

−M (h)
Q

U (d)
a (·, 1, ·)−M (h)

Q(d)

U (c)
a (·, 1, ·),
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while that for the two faces orthogonal to thex direction is

Q
U (H)

a (0, ·, ·)N = 1

2
J TV

(
AF X1 +AF X2

)
UK−

Q(d)

U (v)
a (0, ·, ·)N

−
Q

U (d)
a (0, ·, ·)N(v)−

Q(d)

U (c)
a (0, ·, ·)N(v),

Q
U (H)

a (1, ·, ·)N = 1√
2
J TV

(−AF X1 +AF X2
)
UK−

Q(d)

U (v)
a (1, ·, ·)N

−
Q

U (d)
a (1, ·, ·)N(v)−

Q(d)

U (c)
a (1, ·, ·)N(v).

In conclusion, the face component of the lifting requires us to solve 2+ 2+ 2 two-
dimensional mass matrix problems; each of these problems is solved, considering for
instance the faces normal to thez axis, by solving(I − 1) and (J− 1) uncoupled one-
dimensional mass matrix problems of size(J− 1) and(I − 1), respectively.

3.4. Perturbation of the Right-Hand Side

The lifting of the Dirichlet datum can be seen as a perturbation on the right-hand side of
the linear system of the discretized version of the Helmholtz equation.

Consider first the Helmholtz equation written in weak form after integration by parts,

(∇(L∗i L∗j L
∗
k),∇uN)+ γ (L∗i L∗j L

∗
k, uN) = (L∗i L∗j L

∗
k, s)+

∮
∂Ä

L∗i L∗j L
∗
k

∂uN

∂n
,

for 0≤ (i, j, k)≤ (I , J, K ), where the shorthandL∗i L∗j L
∗
k= L∗i (x)L

∗
j (y)L

∗
k(z) has been

used and the basis functions have been already put in place of the generic test function.
Recalling the liftinguN = u0,N +ua,N , the weak Helmholtz equation above in matrix form
reads

0
D

Q
UN + M

Q
U

0
E + M

0
F
U N + γ M

Q
UN = S+ boundary integral,

whereU=U0+Ua,
0
E and

0
F are they- and z-counterpart of matrix

0
D, andS repre-

sents theL2 projection of the sources(x, y, z) onto the Legendre basis, namely,si, j,k=
(L∗i (x)L

∗
j (y)L

∗
k(z), s(x, y, z)), 0≤ (i, j, k)≤ (I , J, K ), the integral being evaluated nu-

merically by means of the direct-product Gauss–Legendre quadrature formula.
We have to note that a convention is implicit in the hybrid array/matrix expressions,

as the one written above. It is always understood that any matrix (always denoted by a
nonbold capital letter) that acts on a (three-dimensional) array (always denoted by bold
capital letter) actually multiplies all the planes with the other array index, not involved in
the matrix multiplication, fixed. This is illustrated in Fig. 3.

Since the Dirichlet condition is taken into account by the lifting, only the test func-
tions vanishing on the boundary are needed, represented by theinternal basis functions
L∗i (x)L

∗
j (y)L

∗
k(z) for 2≤ (i, j, k)≤ (I , J, K ). By exploiting the array and matrix
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FIG. 3. Schematic of the matrix multiplication structure of the 3D Helmholtz problem discretized by the
Galerkin–Legendre spectral method.

partitionings introduced before, the system of equations pertaining to these functions as-
sumes the form (

Q(d)

Q

) (
Q(d)

Q

)
(
D(h) D

)
U

(
N(v)

N

)
+ (M (h) M

)
U

(
E(v)

E

)
(

F (d)

F

) (
Q(d)

Q

)
+ (M (h) M

)
U

(
N(v)

N

)
+ γ (M (h) M

)
U

(
N(v)

N

)
= S,

where

U = Ua + U0 =


U(c)

a U(v)
a

U(h)
a U(D)

a
,

U(d)
a U(H)

a

U(V)
a U

.
The right-hand sideS is theL2 projection of the source term onto the basis functions per-
taining only to the internal Legendre modes. Similarly, all other sans serif letters appearing
in the last two equations are defined by

U = {ui, j,k, 2≤ (i, j, k) ≤ (I , J, K )},
M = {mi,i ′ = (L∗i (x), L∗i ′(x)), 2≤ (i, i ′) ≤ I },
N = {n j, j ′ = (L∗j (y), L∗j ′(y)), 2≤ ( j, j ′) ≤ J},
Q = {qk,k′ = (L∗k(z), L∗k′(z)), 2≤ (k, k′) ≤ K },

and therefore involves only the internal Legendre modes in each spatial direction.
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Since all the elements ofU(c)
a , U(h)

a , U(v)
a , U(d)

a , U(H)
a , U(V)

a , andU(D)
a are known, the

equation above can be rewritten transferring all the terms involving known quantities in the
right-hand side. In particular, for the Legendre basis we are working with, the submatrices
D(h), E(v), andF (d) are null and the matricesD, E, andF of the internal diagonal component
are identity matrices of suitable dimension. This implies a substantial simplification of the
explicit expression of the four terms contained in the three-dimensional Helmholtz equation.
Considering the first term, we find

(
Q(d)

Q

)
(
D(h) D

)
U

(
N(v)

N

)
=

Q(d)

U(h)
a N(v)+

Q(d)

U(D)
a N+

Q
U(V)

a N(v)+
Q
UN,

since matrixD(h) is null andD is simply the identity matrix of dimensionI − 1. A similar
calculation for the two derivative terms in the other directionsy andz gives

(
Q(d)

Q

)
(
M (h) M

)
U

(
E(v)

E

)
= M (h)

Q(d)

U(v)
a +M

Q(d)

U(D)
a +M (h)

Q
U(H)

a +M
Q
U

and

(
F (d)

F

)
(
M (h) M

)
U

(
N(v)

N

)
= M (h)U(d)

a N(v) +M U(v)
a N(v) + M (h)U(H)

a N +MUN.

The calculation of the nonderivative term proportional toγ is slightly more complicated
and gives

(
Q(d)

Q

)
(
M (h) M

)
U

(
N(v)

N

)
= M (h)

Q(d)

U(c)
a N(v) +M

Q(d)

U(h)
a N(v) + M (h)

Q(d)

U(v)
a N+M

Q(d)

U(D)
a N

+M (h)
Q

U(d)
a N(v) +M

Q
U(V)

a N(v) + M (h)
Q

U(H)
a N+M

Q
UN.

The final system of discrete equations to be solved assumes the form

Q
UN+M

Q
U +MUN+ γM

Q
UN = R,
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where the perturbed right-hand side includes the lifting according to the definition

R = S−
Q(d)

U(h)
a N(v)−

Q(d)

U(D)
a N −

Q
U(V)

a N(v) − M (h)
Q(d)

U(v)
a −M

Q(d)

U(D)
a

−M (h)
Q

U(H)
a −M (h)U(d)

a N(v)−M U(V)
a N(v)−M (h)U(H)

a N

− γ

M (h)
Q(d)

U(c)
a N(v) +M

Q(d)

U(h)
a N(v) + M (h)

Q(d)

U(v)
a N+ M (h)

Q
U(d)

a N(v)

+M
Q(d)

U(D)
a N+M

Q
U(V)

a N(v) + M (h)
Q

U(H)
a N

 .
From the computational viewpoint, the perturbation of the right-hand side given by the
expression above is not too expensive to be evaluated, since, for the considered Galerkin–
Legendre method, the matrices corresponding to all the off-diagonal blocks contain only
two nonzero elements and the three matricesM, N, andQ are pentadiagonal, with only
three nonzero diagonals. The matrix expression is however a result of a general validity,
irrespective of the basis adopted.

3.5. Mass-Matrix-Based Triple Diagonalization Algorithm

To solve this linear system, in a preliminary step we solve the symmetric eigenvalue
problem [14] for the three pentadiagonal mass matricesM, N, andQ, namely,

Mw (i ) = λi w (i ), 2≤ i ≤ I ,W ≡[w (2), . . . ,w (I )
]
,

Nv ( j ) = σ j v ( j ), 2≤ j ≤ J,V ≡[v (2), . . . ,v (J)
]
,

Qz (k) = θkz (k), 2≤ k ≤ K ,Z ≡[z (2), . . . , z (K )],
so that

W TMW = Λ, V TNV = Σ, Z TQZ = Θ,

whereΛ, Σ, and Θ denote the diagonal matrices of the eigenvalues ofM, N, and Q,
respectively.

As a consequence of the triple similarity transformation

R→ R =W T
Z
RV

and of the analogous one forU, the linear system becomes

Θ
U Σ+ Λ

Θ
U +Λ UΣ+ γΛ

Θ
U Σ = R,
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which is solved, componentwise, by means of

ui, j,k =
ri, j,k

σ j θk + λi θk + λiσ j + γ λiσ j θk
, 2≤ (i, j, k) ≤ (I , J, K ).

The sought for solution is then obtained by computing the anti-transform

U→ U =W
Z T

U V T

and finally mergingUwith the precomputed Legendre coefficients of the liftingua,N(x, y, z),
to give

U =


U(c)

a U(v)
a

U(h)
a U(D)

a
,

U(d)
a U(H)

a

U(V)
a U

.

4. NUMERICAL TESTS

The proposed direct solution algorithm for the 3D Helmholtz equation has been im-
plemented exploiting the matrix/array notation described in the previous sections. Despite
the complexity of the expression defining the lifted right-hand sideR its implementation
is relatively straightforward once suitable primitives are introduced to perform thesparse
matrix multiplications in the three directions, taking into account the block partitioning of
the mass matrices.

The first test case we solved is the Dirichlet problem for the Helmholtz equation with
exact solution

u(x, y, z) = cos(πx) cos(πy) cos(πz)

in the domainÄ= (−1, 1)3, for γ = 100. The results for the maximum pointwise value of
the erroruN − u are presented in Table I and illustrate the spectral accuracy of the method.

The algorithm can applied to any rectangular domain by introducing suitable scaling
coefficients associated to the three directions in the expression forR as well as in the triple
diagonalization explicit solution formula. This is shown by solving the same problem in the
shifted and rescaled boxÄ= (− 3

2,
3
4)× (− 1

4,
5
4)× (0.3, 2.2). Error results given in Table II

confirm the spectral convergence.

TABLE I

Maximum Pointwise Error for the Solution

u = cos(πx) cos(πy) cos(πz), Ω = (−1, 1)3, γ = 100

I × J× K ‖uN − u‖∞
6× 6× 6 8.11× 10−3

12× 12× 12 8.11× 10−8

18× 18× 18 5.99× 10−14

24× 24× 24 8.36× 10−14

12× 15× 18 2.85× 10−8
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TABLE II

Maximum Pointwise Error for the Solution u = cos(πx) cos(πy) cos(πz),

Ω = (− 3
2 , 3

4)× (− 1
4 , 5

4)× (0.3, 2.2),γ = 100

I × J× K ‖uN − u‖∞
6× 6× 6 1.59× 10−2

12× 12× 12 5.54× 10−7

18× 18× 18 8.07× 10−13

24× 24× 24 3.20× 10−14

12× 15× 18 4.92× 10−7

Finally, a more challenging problem has been addressed in order to check the capability
of the numerical scheme for very high degree bases. We consider a Dirichlet–Helmholtz
problem with exact solution

u(x, y, z) = tanh(αk · (r − r0)),

wherer= xx̂+ yŷ+ zẑ, while α, k, and r0 are constant quantities. This solution corre-
sponds to a plane transition layer of thickness 1/α normal to the direction ofk and passing
through the pointr0. Considering the domainÄ= (−1, 1)3 and takingr0= (1, 1, 1), we
corner this layer in the region of the “trf” vertex. The results forα= 50 andk= (1, 2, 3)
are given in Table III in terms ofL∞ andL2 norms ofuN − u. The spectral convergence
obtained in this test demonstrates the correctness of the boundary condition treatment in
the corner regions by the proposed lifting. The high accuracy is obtained thanks to the
increasing resolution of the Legendre basis near the boundary.

In fact, despite the spectral convergence, the accuracy is lower when the transition layer
is located in the interior of the domain, as shown by the results reported in Table IV for the
test case withk= (1, 1, 1) andr0= ( 3

4,
3
4,

3
4).

The efficiency characteristics of the method are outlined by reporting the dependence
of the execution times on the number of unknowns, in Fig. 4. Here the total CPU time
versusN= I = J= K is compared with theN3 and N4 slopes, the latter being the ex-
pected asymptotic behaviour on account of the computational complexity of the similarity
transformation component of the algorithm. The performance is better than expected and
this may be a consequence of the super-scalar capability of the processor of the workstation
(HP-J2240) employed for the tests.

The relative computer cost of the different components of the algorithm are shown in
Table V. It is interesting to note that the time needed to perform the lifting is only a small

TABLE III

Errors for u = tanh(αk · (r− r0)), with α = 50,k = (1, 2, 3),

and r0 = (1, 1, 1)

I = J= K ‖uN − u‖∞ ‖uN − u‖2

50 1.49× 10−2 4.16× 10−6

100 5.69× 10−5 1.06× 10−8

150 6.07× 10−7 5.61× 10−11
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TABLE IV

Errors for u = tanh(αk · (r− r0)), with α = 50,k = (1, 1, 1),

and r0 = ( 3
4 , 3

4 , 3
4)

I = J= K ‖uN − u‖∞ ‖uN − u‖2

50 1.83 6.83× 10−2

100 6.27× 10−2 1.85× 10−3

150 6.92× 10−3 1.70× 10−4

200 1.71× 10−3 2.58× 10−5

TABLE V

Partial and Total CPU Times in Seconds

I = J= K Start Lifting Perturb. Solution Total

25 0.12 0.04 0.14 0.04 0.34
50 1.00 0.23 1.51 0.69 3.43

100 11.02 1.30 13.99 11.33 37.64
150 37.92 3.69 51.76 41.94 135.31

FIG. 4. Execution time vs the numberN of unknowns, compared with the slopesN3 andN4.
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fraction of the total in spite of the complexity of its formulation described in Subsection 3.3.
The computational cost is nearly equally divided between the initialization phase (solution
of the eigenproblem and evaluation of the basis functions at the Legendre points), the
perturbation of the right-hand side, and the solution by means of the triple similarity trans-
formations given in Subsection 3.5. The right-hand side perturbation is always the most
expensive part of the solution algorithm but, when the same equation has to be solved for
several source functions under identical boundary conditions, this step can be performed
once and for all, as well as the other preceding computational steps.

We note that a substantial decrease in the CPU times with respect to the reported figures
is achieved by replacing the Fortran 90 MATMUL built-in function by architecture opti-
mized BLAS subroutines. However, a detailed performance comparison of different code
implementations of the proposed algorithm, possibly across different platforms, is beyond
the scope of the present article.

5. CONCLUSIONS

A new Galerkin–Legendre spectral method for the direct solution of Poisson or Helmholtz
equations in three-dimensional rectangular domains under nonhomogeneous Dirichlet con-
dition on the entire boundary has been presented. The method is an extension of Jie Shen’s
diagonalization algorithm for 2D problems [8] and employs a lifting of the Dirichlet datum
to obtain the Legendre coefficients of the trace of the unknown. The lifting is performed in
three subsequent steps to account for the values prescribed first at the vertices, then along
the edges, and finally on the faces of the rectangular domain, in compliance with the ex-
isting compatibility conditions for the Dirichlet data on the six faces of the boundary. The
Legendre coefficients associated with the components of the lifting other than the vertex one
are determined by theL2 projection of the boundary values along the edges and on the faces
through Gauss–Legendre numerical integration. The solution algorithm fully exploits the
direct product nature of the spectral approximation and reduces the solution of the 3D elliptic
problem to a sequence of pentadiagonal symmetric linear problems and eigenproblems for
the three 1D mass matrices in the Cartesian directions and of similarity transformations. The
performed numerical tests illustrate the spectral accuracy of the method and demonstrate
the possibility of solving 3D elliptic equations with upO(107) spectral unknowns very effi-
ciently. It must be emphasized that all the algorithmic components of the proposed method
are intrinsically vectorial; moreover, owing to the complete independence of the matrix×
array multiplications involved in the triple similarity transformations, a high degree of
parallelization of the algorithm is possible, in compliance with its direct product nature.

The present method can be extended to elliptic equations supplemented by the Neumann
condition by introducing a different basis which allows us to enforce the derivative boundary
condition in an essential way, as suggested by Jie Shen [8]. In this way, the diagonal and
pentadiagonal patterns of the 1D stiffness and mass matrices are preserved and a lifting
of the Neumann boundary datum is performed, leading to an algorithm with a structure
surprisingly similar to that for the solution of the Dirichlet problem, as will be shown in a
forthcoming work.

A. APPENDIX

This appendix contains the explicit derivation of the expressions for performing the lifting
of the Dirichlet data on the boundary of the 3D rectangular domain. Subsection A.1 recalls
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the complete set of discrete boundary values used by the proposed direct solver. These
values are required by our algorithm to compute the Legendre coefficients associated with
the trace of the unknown by means ofL2 projection through Gauss–Legendre numerical
quadrature. Then, Subsections A.2 and A.3 deal with the derivation of the expressions for
the components of the lifting associated with the edges and the faces, respectively.

A.1. The Set of Discrete Dirichlet Data

Let us first summarize the set of boundary values needed by our spectral solution algorithm
for the Dirichlet problem in three dimensions. This set comprises three groups of data. First,
there are the values at the eight corners of the cube,(

albn altn albf altf

arbn artn arbf artf

)
.

Then, there are the values at the (1D) Gauss–Legendre points of the twelve edges of the
cube, which we regroup in three sets of four edges parallel to each coordinate axis, namely,
for thex axis 

Aex1 = {a(xg,−1,−1), 1≤ g ≤ I + 1}
Aex2 = {a(xg,+1,−1), 1≤ g ≤ I + 1}
Aex3 = {a(xg,+1,+1), 1≤ g ≤ I + 1}
Aex4 = {a(xg,−1,+1), 1≤ g ≤ I + 1}

for the y axis 
Aey1 = {a(−1, yg,−1), 1≤ g ≤ J + 1}
Aey2 = {a(+1, yg,−1), 1≤ g ≤ J + 1}
Aey3 = {a(+1, yg,+1), 1≤ g ≤ J + 1}
Aey4 = {a(−1, yg,+1), 1≤ g ≤ J + 1},

and for thez axis 
Aez1 = {a(−1,−1, zg), 1≤ g ≤ K + 1}
Aez2 = {a(+1,−1, zg), 1≤ g ≤ K + 1}
Aez3 = {a(+1,+1, zg), 1≤ g ≤ K + 1}
Aez4 = {a(−1,+1, zg), 1≤ g ≤ K + 1}.

Finally, there are the values at the (2D) Gauss–Legendre points of the six faces of the cube,
namely 

AF X1 = {a(−1, yg, zh), 1≤ g ≤ J + 1, 1≤ h ≤ K + 1}
AF X2 = {a(+1, yg, zh), 1≤ g ≤ J + 1, 1≤ h ≤ K + 1}
AFY1 = {a(xg,−1, zh), 1≤ g ≤ I + 1, 1≤ h ≤ K + 1}
AFY2 = {a(xg,+1, zh), 1≤ g ≤ I + 1, 1≤ h ≤ K + 1}
AF Z1 = {a(xg, yh,−1), 1≤ g ≤ I + 1, 1≤ h ≤ J + 1}
AF Z2 = {a(xg, yh,+1), 1≤ g ≤ I + 1, 1≤ h ≤ J + 1}.
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The total number of distinct Dirichlet values is therefore 8+ 4(I + J+ K + 3)+ 2(I + 1)
(J+ 1)+ 2(I + 1)(K +1)+2(J+ 1)(K + 1)= 2(I J + I K + J K + 4I + 4J+ 4K+13).
This value can be compared with the number of discrete Dirichlet values which are used
instead in a collocation approach based on(I + 1)(J+ 1)(K + 1) Gauss–Lobatto points.
In this case the number of collocation points on the boundary is 2(I J + I K + J K + 1). As
a consequence, the proposed Galerkin–Legendre method samples the datuma(r∂Ä) of the
Dirichlet boundary condition at 8(I + J+ K + 3) more points than collocation schemes
using the same number of polynomials.

A.2. Derivation of the Edge Component of the Lifting

Let us consider the problem associated with the subcomponent of the lifting to account
for the Dirichlet data prescribed along the four horizontal edges, once the possibly non-
homogeneous values at the vertices have been already taken into account by the corner
component of the liftingU(c)

a . We introduce the test functions

L∗i (x)L
∗
j (y)L

∗
k(z), for 2≤ i ≤ I , j = 0, 1, andk = 0, 1,

and the expansion

uedges
a,N (x, y, z) =

I∑
i=2

L∗i (x)

L∗k(z)
∑

k=0,1

U (h)
a (i, j, k) L∗j (y)

∑
j=0,1

+
∑
i=0,1

L∗i (x)

L∗k(z)
∑

k=0,1

U (v)
a (i, j, k) L∗j (y)

J ∑
j=2

+
∑
i=0,1

L∗i (x)

L∗k(z)
K ∑

k=2

U (d)
a (i, j, k) L∗j (y)

∑
j=0,1

.

Here the symbol
∑
is used for indicating summation in the third dimensionz, similarly

to the one adopted for the second dimensiony, but placed on the top of the summed
elements of the three-dimensional matrix. Consider now the uncoupled problem stated in
Subsection 3.3.2 for the four horizontal edges,

4∑
`=1

∫
ex̀
vuedges

a,N =
4∑
`=1

∫
ex̀
v
(
aex̀ − ucorners

a,N

)
,

and express it in a fully discrete form by takingv(x, y, z)= L∗i ′(x)L
∗
j ′(y)L

∗
k′(z) with

2≤ i ′ ≤ I , j ′ = 0, 1, andk′ = 0, 1. By introducing the 2× 2 matrix H with elements

Hi, j = L∗i (−1)L∗j (−1)+ L∗i (1)L
∗
j (1), for i = 0, 1 and j = 0, 1,



SPECTRAL SOLUTION OF 3D HELMHOLTZ EQUATION 479

and using the elements of the one-dimensional mass matrix,mi ′,i =
∫ 1
−1 L∗i ′(x)L

∗
i (x) dx,

the weak equations become, for every 2≤ i ′ ≤ I , j ′ = 0, 1 andk′ = 0, 1,

I∑
i=2

mi ′,i

Hk,k′
∑

k=0,1

U (h)
a (i, j, k)Hj, j ′

∑
j=0,1

=
∫ 1

−1
L∗i ′(x)

L∗k′(−1)
aex1(x) dx L∗j ′(−1)+

∫ 1

−1
L∗i ′(x)

L∗k′(−1)
aex2(x) dx L∗j ′(1)

+
∫ 1

−1
L∗i ′(x)

L∗k′(1)
aex3(x) dx L∗j ′(1)+

∫ 1

−1
L∗i ′(x)

L∗k′(1)
aex4(x) dx L∗j ′(−1)

−
∑
i=0,1

mi ′,i

Hk,k′
∑

k=0,1

U (c)
a (i, j, k)Hj, j ′

∑
j=0,1

.

In the actual algorithm, the integrals on the right-hand side are evaluated approximately by
means of Gauss–Legendre quadrature formula to give, for instance,

∫ 1

−1
L∗i ′(x)a

ex̀ (x) dx =
I+1∑
g=1

L∗i ′(xg) wg aex̀ (xg),

wherexg andwg, 1≤ g≤ I + 1, are the quadrature nodes and their respective weights.
Accordingly, the previous weak equations assume the form

I∑
i=2

mi ′,i

Hk,k′
∑

k=0,1

U (h)
a (i, j, k)Hj, j ′

∑
j=0,1

=
I+1∑
g=1

L∗i ′(xg)wg

L∗k′(−1)
aex1(xg) L∗j ′(−1)+

L∗k′(−1)
aex2(xg) L∗j ′(1)+

L∗k′(1)
aex3(xg) L∗j ′(1)

+
L∗k′(1)

aex4(xg) L∗j ′(−1)

−∑
i=0,1

mi ′,i

Hk,k′
∑

k=0,1

U (c)
a (i, j, k)Hj, j ′

∑
j=0,1

.

The whole system can be recast in matrix form by introducing the vector of the Gauss–
Legendre weights

W ≡ {wg, 1≤ g ≤ I + 1},

the arrayL of values of the Legendre functions computed at the Gauss–Legendre nodes,
indicated by script symbols, namely,

L ≡ {L(g, i ) = L∗i (xg), 1≤ g ≤ I + 1, 0≤ i ≤ I },
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and using the four vectorsAex1,Aex2,Aex3, andAex4, defined in Appendix A.1. The full system
in matrix form reads as

M
H

U(h)
a H = LT

W ?
(L∗0(−1) L∗1(−1))

Aex1 (L∗0(−1) L∗1(−1))

+
(L∗0(−1) L∗1(−1))

Aex2 (L∗0(1) L∗1(1))+
(L∗0(1) L∗1(1))

Aex3 ((L∗0(1) L∗1(1))

+
(L∗0(1) L∗1(1))

Aex4 (L∗0(−1) L∗1(−1))

− M (h)
H

U(c)
a H,

where? denotes the element-by-element multiplication of vectors and where we introduced
the following partitioning of the mass matrix,

M =
(

M (c) M (h)T

M (h) M

)
,

using sans serif letters to denote vectors and matrices which pertain only to internal modes,
that is, to basis functions vanishing at the extremes of the interval.

In particular, for our basis, the matrixH is diagonal and therefore the system of equations
can be written as four fully decoupled systems each of(I + 1) unknowns. In fact, for the
Legendre basisL∗i (x) one has

H =
(

2 0
0 1

)
,

and the four uncoupled systems to perform the component of the lifting associated with the
horizontal edges are

MU (h)
a (·, 0, 0) = 1

4
LT [W ? (Aex1 + Aex2 + Aex3 + Aex4)] − M (h)U (c)

a (·, 0, 0),

MU (h)
a (·, 1, 0) = 1

2
√

2
LT [W ? (−Aex1 + Aex2 + Aex3 − Aex4)] − M (h)U (c)

a (·, 1, 0),

MU (h)
a (·, 0, 1) = 1

2
√

2
LT [W ? (−Aex1 − Aex2 + Aex3 + Aex4)] − M (h)U (c)

a (·, 0, 1),

MU (h)
a (·, 1, 1) = 1

2
LT [W ? (Aex1 − Aex2 + Aex3 − Aex4)] − M (h)U (c)

a (·, 1, 1).

Notice that, irrespective of such a decoupling, the edge component of the lifting cannot be
evaluated on a edge-by-edge base.

A.3. Derivation of the Face Component of the Lifting

We consider the problem associated with the subcomponent of the lifting to account for
the Dirichlet values on the faces whose normal is oriented as thez-axis, once their edges
have been already homogenized by the previous determination of all of the edge components
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of the lifting U(h)
a , U(v)

a , andU(d)
a . To express this problem in a discrete form we introduce

the test functions

L∗i (x)L
∗
j (y)L

∗
k(z), for 2≤ i ≤ I , 2≤ j ≤ J, andk = 0, 1,

and the expansion

ufaces
a,N (x, y, z) =

I∑
i=2

L∗i (x)

L∗k(z)
∑

k=0,1

U (D)
a (i, j, k) L∗j (y)

J ∑
j=2

+
∑
i=0,1

L∗i (x)

L∗k(z)
K ∑

k=2

U (H)
a (i, j, k) L∗j (y)

J ∑
j=2

+
I∑

i=2

L∗i (x)

L∗k(z)
K ∑

k=2

U (V)
a (i, j, k) L∗j (y)

∑
j=0,1

.

Consider now the uncoupled problem stated in Subsection 3.3.3 for the two faces normal
to thez axis,

2∑
`=1

∫
F Z`

v ufaces
a,N =

2∑
`=1

∫
F Z`

v
(
aF Z` − uedges

a,N − ucorners
a,N

)
,

and express it in a fully discrete form by takingv(x, y, z)= L∗i ′(x)L
∗
j ′(y)L

∗
k′(z) with

2 ≤ i ′ ≤ I , 2≤ j ′ ≤ J andk′ = 0, 1. Recalling the 2× 2 matrix H introduced previously,
using the one-dimensional mass matrix elementsmi ′,i =

∫ 1
−1 L∗i ′(x)L

∗
i (x) dx andnj ′, j =∫ 1

−1 L∗j ′(y)L
∗
j (y) dy, and exploiting the fact that the term pertaining to thed-edges vanishes

sinceL∗k(±1)= 0, k≥ 2, the weak equations become, for every 2≤ i ′ ≤ I , 2≤ j ′ ≤ J, and
k′ = 0, 1,

I∑
i=2

mi ′,i

Hk,k′
∑

k=0,1

U (D)
a (i, j, k)nj, j ′

J ∑
j=2

=
∫

F Z1

L∗i ′(x)
L∗k′(−1)

aF Z1(x, y) L∗j ′(y) dx dy+
∫

F Z2

L∗i ′(x)
L∗k′(1)

aF Z2(x, y) L∗j ′(y) dx dy

−
I∑

i=2

mi ′,i

Hk,k′
∑

k=0,1

U (h)
a (i, j, k)nj, j ′

∑
j=0,1

−
∑
i=0,1

mi ′,i

Hk,k′
∑

k=0,1

U (v)
a (i, j, k)nj, j ′

J ∑
j=2

∑
i=0,1

mi ′,i

Hk,k′
∑

k=0,1

U (c)
a (i, j, k)nj, j ′

∑
j=0,1

.
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In the actual algorithm, the double integrals on the right-hand side are evaluated approxi-
mately by means of Gauss–Legendre quadrature formula to give, for instance,

∫ 1

−1

∫ 1

−1
L∗i ′(x)aF X` (x) L∗j ′(y) dx dy=

I+1∑
g=1

L∗i ′(xg) wg aF X` (xg, yh)vh L∗j ′(yh)

J+1∑
h=1

,

where, for 1≤ g≤ I + 1 and 1≤ h≤ J+ 1, xg andyh are the quadrature nodes andwg and
vh and their respective weights. Accordingly, the previous weak equations assume the form

I∑
i=2

mi ′,i

Hk,k′
∑

k=0,1

U (D)
a (i, j, k)nj, j ′

J ∑
j=2

=
I+1∑
g=1

L∗i ′(xg)wg


L∗k′(−1)

aF Z1(xg, yh) +
L∗k′(1)

aF Z2(xg, yh)

vh L∗j ′(yh)

J+1∑
h=1

−
I∑

i=2

mi ′,i

Hk,k′
∑

k=0,1

U (h)
a (i, j, k)nj, j ′

∑
j=0,1

−
∑
i=0,1

mi ′,i

Hk,k′
∑

k=0,1

U (v)
a (i, j, k)nj, j ′

J ∑
j=2

−
∑
i=0,1

mi ′,i

Hk,k′
∑

k=0,1

U (c)
a (i, j, k) nj, j ′

∑
j=0,1

.

The whole system can be recast in matrix form using the two matricesAF Z1 andAF Z2 of
the values of the Dirichlet conditions at the Gauss–Legendre quadrature points belonging
to the two considered faces, defined in Appendix A.1. The full system in matrix form reads

M
H

U(D)
a N = LTW

(L∗0(−1) L∗1(−1))
AF Z1 +

(L∗0(1) L∗1(1))
AF Z2

VJ
−M

H
U(h)

a N(v) − M (h)
H

U(v)
a N− M (h)

H
U(c)

a N(v),

with usual meaning for symbols and for matrix partitionings and where we have introduced
the two diagonal matrices of the Gauss–Legendre weights,

W =


w1

w2

. . .

wI+1

 and V =


v1

v2

. . .

vJ+1

.

Since the matrixH is diagonal the system of equations can be written as two fully decoupled
two-dimensional consistent matrix problems each of(I − 1)× (J − 1) unknowns. Using
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the elements ofH and rearranging, one obtains two uncoupled systems to perform the
component of the lifting associated with two faces orthogonal to thez direction,

MU (D)
a (·, ·, 0)N = 1

2
LTW(AF Z1 +AF Z2)VJ −MU (h)

a (·, ·, 0)N(v)

−M (h)U (v)
a (·, ·, 0)N− M (h)U (c)

a (·, ·, 0)N(v),

MU (D)
a (·, ·, 1)N = 1√

2
LTW(−AF Z1 +AF Z2)VJ −MU (h)

a (·, ·, 1)N(v)

−M (h)U (v)
a (·, ·, 1)N− M (h)U (c)

a (·, ·, 1)N(v).

It is important to remark that, again, irrespective of such a decoupling, the face component
of the lifting cannot be evaluated on a face-by-face base.
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